E-ISSN: 2656-8888 | P-ISSN: 2655-8807, DOI:10.34306

# Strategic Management and Socialpreneurship for Achieving Food Sustainability in Free Lunch Programs

Thomas Sumarsan Goh<sup>1</sup>, Jaja Suteja<sup>2</sup>, Erika<sup>3</sup>, Arthur Simanjuntak<sup>4</sup>, Aldo Hermaya Aditiya Nur

Karsa<sup>5</sup>, Mary Angel<sup>6</sup>

1.4 Department of Management Science, Methodist University of Indonesia, Indonesia
 <sup>2</sup>Faculty of Economics and Business, University of Pasundan, Indonesia
 <sup>3</sup>Department of Accountancy, STIE Professional Management College, Indonesia

<sup>5</sup>Politeknik Siber Cerdika Internasional, Indonesia <sup>6</sup>Department of Digital Business, Adi Journal Incorporation, United States

<sup>1</sup>gohtho@gmail.com, <sup>2</sup>jajasuteja@unpas.ac.id, <sup>3</sup>iyoori.seol@gmail.com, <sup>4</sup>as\_smjt@rocketmail.com, <sup>5</sup>aldohermayaaditia@gmail.com, <sup>6</sup>maryangel@adi-journal.org

**Corresponding Author** 

## **Article Info**

# Article history:

Submission November 5, 2024 Revised January 15, 2025 Accepted February 7, 2025 Published February 12, 2025

# Keywords:

Strategic Management Socialpreneurship Lunch Free Program Artificial Intelligence in Supply VOSviewer



# **ABSTRACT**

Achieving Sustainable Development Goal 2 (SDG 2), which focuses on ending hunger, requires innovative approaches in strategic management and socialpreneurship food sustainability. This study investigates the intersection between these fields from 2016 to 2024. The primary **objective** is to analyze trends and contributions in the area of strategic management applied to food sustainability, particularly focusing on SDG 2, and to understand how business strategies and government policies can contribute to food security and hunger reduction. A bibliometric analysis was conducted using Scopus and VOSviewer to examine bibliometric relationships between countries, authors, organizations, journals, documents, and emerging keywords related to strategic management and socialpreneurship food sustainability. The study specifically looks at the growth of research and the relationship between key concepts. The analysis revealed a significant increase in research activity, with the volume of publications more than tripling from 2016 to 2023. Key countries contributing to this growth include India, Spain, and Bangladesh, with Dar es Salaam University emerging as a leader in food sustainability research in Africa. VOSviewer highlighted the rising importance of Artificial Intelligence and blockchain technologies in optimizing food security through supply chain management. The findings underscore the critical role of government policies and corporate responsibility in achieving SDG 2 and reducing hunger. Successful implementation of sustainable practices in corporate strategies requires strong collaboration between companies, government agencies, and other stakeholders.

This is an open access article under the CC BY 4.0 license.



13

DOI: https://doi.org/10.34306/att.v7i1.528

This is an open-access article under the CC-BY license (https://creativecommons.org/licenses/by/4.0/) 
©Authors retain all copyrights

# 1. INTRODUCTION

The new President of Indonesia, starting in 2024-2029, plans to focus on lowering the number of Indonesians with stunted growth. The goal is to create a prosperous Indonesia by 2045 through a government program that provides a free lunch program. Many people believe that this program is a fast solution to safe-

Journal homepage: https://att.aptisi.or.id/index.php/att

guard future generations. Indonesia's stunting rate was 21.6%, and only improved by 0.1% in 2024, which is above the limit of the World Health Organization of 20% [1]. This issue has led researchers to explore how scholars and experts study strategic management in businesses and its connection to socialpreneurship food sustainability [2]. This topic also aligns with the second Sustainable Development Goal of the United Nations, which aims to end hunger worldwide.

Strategic management and socialpreneurship food sustainability are crucial to achieving the Sustainable Development Goals of the United Nations, particularly SDG 2, which focuses on food security. This has led to academic research on sustainable practices adopted by companies to address climate, resource use, and economic challenges. This integrated approach allows industry, policymakers, and researchers to develop sustainable solutions [3]. This bibliographical study follows the research. Landscape from 2016 to 2024, analyzing key trends, influential journals, and collaborations. It identifies emerging research areas and potential gaps for future attention [4].

This bibliographical study tracks the research landscape of strategic management and socialpreneurship food sustainability from 2016 to 2024 by analyzing data using a bibliographical analysis tool called VOSviewer. Among other things, it focuses on key trends in the field, prolific authors, influential journals, and important publications. Furthermore, the article aims to highlight the collaboration of countries and institutions aiming to influence global efforts to improve food sustainability through strategic management frameworks. It maps the emerging research areas of this landscape and pinpoints Various gaps that may become the focus of attention of researchers, practitioners, and policymakers in the coming years [5].

This study advances the existing literature by providing a comprehensive bibliometric analysis that highlights the evolving dynamics of strategic management in food sustainability. Unlike prior research, which often focuses on isolated case studies or theoretical discussions, this paper employs advanced bibliometric tools like VOSviewer to uncover emerging trends, collaboration networks, and technology driven innovations, such as the integration of AI and blockchain in food supply chains.

The findings not only validate earlier research emphasizing the importance of multi-stakeholder collaboration but also challenge traditional views by showcasing how technology can disrupt conventional strategic management practices. For instance, the identification of underrepresented regions like Africa and specific entrepreneurial sectors like agripreneurship offers a fresh perspective that enriches the discourse. These novel contributions position this research as a critical resource for bridging theoretical insights with actionable strategies in achieving SDG 2.

# 2. RESEARCH METHODS

This article is a literature review through VOSviewer bibliometric couple of country, organization, author, source, document, and co-occurrence keywords that appear together when we search for strategy management and nutrition keywords.

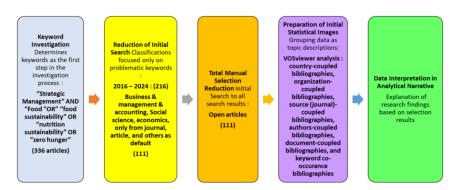



Figure 1. Steps of bibliometric analysis, including data collection, filtering, and visualization using VOSviewer.

This study uses bibliometric analysis with VOSviewer and Scopus to investigate research trends in strategic management and socialpreneurship food sustainability. From 1, the data collection began by searching for publications from the Scopus database for the period 2016–2024 using relevant keywords such as "strategic

management," "food sustainability," and "SDG 2." The initial dataset of 336 publications was refined to 111 articles through bibliographic coupling, ensuring the relevance of the selected articles to the focus of this study. The filtering process includes keyword co-occurrence analysis and a focus on specific disciplines such as business, management, and economics [6]. VOSviewer was used to visualize networks between countries, authors, and institutions, providing insights into collaboration patterns and thematic clusters. Density and overlay visualizations highlighted influential publications and emerging research trends. These steps ensure that the methodology is robust and replicable, contributing significantly to the transparency and accessibility of the research.

The VOSviewer analysis covers bibliometrics couple analysis of countries, authors, organizations, sources, documents, and co-occurrence key words. The VOSviewer bibliometric coupled visualize the highlight links and patterns in the dataset as network visualizations are developed to depict co-country, and co-occurrence of keywords related to integrating management strategies in programs designed to food sustainability [7]. Density visualizations are used to determine the most influential organizations and publications. Overlay visualizations of organization, and document are useful for tracking the temporal evolution of study ideas [8].

The bibliometric methodology used in this study was designed to ensure a rigorous and transparent analysis. The data was collected from the Scopus database by using a structured keyword search that included terms like "strategic management," "food sustainability," and "SDG 2." The search was limited to articles published between 2016 and 2024 and focused on disciplines such as business, management, and economics. The selection criteria involved filtering articles based on relevance to the research topic, using bibliographic coupling and co-occurrence of keywords as the primary metrics. A total of 336 publications were initially identified, which were narrowed down to 111 articles following a thorough screening process [9]. VOSviewer was then employed to visualize the data, generating network visualizations that revealed relationships among countries, authors, institutions, and thematic clusters. These visualizations were interpreted to identify key collaboration patterns, influential publications, and emerging research areas. Density and overlay visualizations were also utilized to track the temporal evolution of themes, providing insights into the dynamic nature of research trends in this field.

# 2.1. Simplifying Technical Language and Explanations

Revised Explanation of Bibliometric Methods: To improve the accessibility of the paper for a broader audience, the bibliometric methods are described as follows: Bibliometric analysis is a quantitative approach to assess research trends and collaborations. Tools like VOSviewer are used to visualize patterns and relationships in the data, such as co-authorship networks, keyword co-occurrences, and publication trends. For example, in this study, keyword co-occurrence analysis reveals emerging themes by identifying terms frequently appearing together, while density visualizations highlight influential authors and organizations. This method enables researchers to identify gaps and opportunities in the literature efficiently.

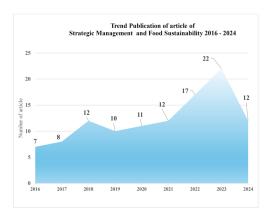



Figure 2. Publication trends in strategic management and food sustainability (2016–2024), highlighting a peak in 2023.

Food stockpiling has become a much more important aspect of strategizing within the period of 2016 to 2024. This trend further highlights the growing trend to work towards integrating green economy into

businesses. The sharp increase in activity in 2023 is most probably indicative of the heightened academic interest in the operational aspects of such systems, regarding the food security technologies as well as the supply chain philosophies [10]. This is an initiative that is also very well connected with the worldwide agenda towards ensuring the attainment of zero hunger, which is still the most important sustainability goal for corporations.

It is apparent that the changes in the trends of publications demonstrate the dynamic nature of both the research and practice in this area. Yet even though there are strides made towards ensuring that the food sustains supply chain is environmentally sustainable, the strategic management approaches are still widening. Anyway, there is plenty to be done, especially on the possibilities of adopting the likes of artificial intelligence and blockchain for the sustainable supply chains. These innovations could be revolutionary in the promotion of green business operations [11]. The continuum state over the years indicates that there is research focus that is bringing about changes that is enhancing the transformation of food systems in accordance with the sustainable objectives of corporations.

# 3. BIBLIOMETRIC ANALYSIS

# 3.1. Country-based Bibliometric Analysis

Country-based bibliometric analysis provides an overview of international collaboration in strategic management and socialpreneurship food sustainability. The network visualization in this image illustrates the relationships between countries formed in an effort to address the challenges of sustainable food production and strategic management. Countries are grouped into three clusters based on their focus and contributions: the Red Cluster, which includes countries such as India, Iran, and China, focusing on sustainable food production methods; the Blue Cluster, involving Spain and Bangladesh, emphasizing the application of technology and sustainable agricultural practices in various regions; and the Green Cluster, led by the Czech Republic, highlighting the integration of smart digital systems for sustainable agriculture. This visualization underscores the importance of cross-country collaboration in achieving global food security amid growing population challenges and increasing food demand.



Figure 3. Network visualization of country collaborations in strategic management and food sustainability.

The network visualization highlights important groups of countries, as follows: Red Cluster: Countries like India, Iran, and China are the main focus here. India is especially active in researching ways to make food production more sustainable [12]. This group works together to improve food production methods and find solutions to handle the growing population and increasing need for food. Blue Cluster: Spain and Bangladesh are key in this group, focusing on how Europe can be involved in making food production more sustainable and using technology to help. Spain's work with Bangladesh shows how sustainable farming can be used in developing areas. Green Cluster: The Czech Republic leads this group, focusing on combining sustainable farming with smart digital systems. This group represents how Europe is taking responsibility for making food production more sustainable.

# 3.2. Organization-based Bibliometric Analysis

Organization-based bibliometric analysis provides an overview of organizational contributions to strategic management and food sustainability research. The density visualization in this image illustrates the distribution of contributions from various organizations in producing impactful research. Areas with red density represent institutions with high citation levels, indicating that the research produced has a significant impact. Meanwhile, areas with blue density represent institutions with low citation levels. Through this visualization, we can identify key organizations that play an important role in advancing dialogue on corporate responsibility, strategic management practices, and sustainable agricultural practices to ensure food security.

Figure 4. Density visualization of key organizations contributing to strategic management and food sustainability research.

Figure 4 presents an analysis of the organization's participation in research on strategic management and food sustainability. Density visualization will inform which organizations are leading the way in terms of impactful research. Red density areas highlight institutions with high citations [13]. This indicates a significant impact, while blue dense areas indicate institutions with low citation levels. The top performers of the University of Dar es Salaam, which indicate its focus on research and strategic management related to food sustainability especially to address food security challenges in Africa. The company's efforts tend to align sustainable business operations with regional needs and global objectives [14].

Other key sponsors include the College of Business, Gulf University and the School of Business Economics are engaged in promoting dialogue on corporate responsibility and the application of strategic management for food sustainability in developing regions, especially contribute in sustainable agriculture, where sustainable practices are critical to achieving long-term food security.

# 3.3. Author-based Bibliometric Analysis

Author-based bibliographic analysis provides an overview of individual contributions to strategic management and food sustainability research. This diagram visualization shows the relationships and involvement of authors based on time and publication volume. Authors who have long been involved in this field are marked in blue, while those who are new to the field are marked in yellow [15]. The diagram also highlights key authors such as Gaspard and Antonio, who focus on the application of new technology in strategic management and food sustainability. Their research provides a service framework consisting of three layers: agricultural scenarios, cloud data storage, and data processing. This visualization emphasizes the crucial role of authors in driving innovation, reducing food insecurity, and promoting a circular economy through the Agriculture 4.0 approach [16].

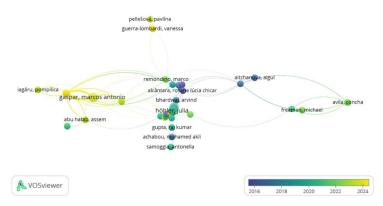



Figure 5. The overlay visualization of strategic management and food sustainability.

Source: Data processing by Bibliometrix (2024)

This graph shows long-standing published authors in the fields of strategic management and food sustainability (highlighted in blue) and those who have recently worked in this field (highlighted in yellow). It

provides a clear visual distinction between the established scholars and the emerging contributors, reflecting the evolving landscape of research in these crucial areas.

The most recent authors as lead authors (highlighted by yellow circle) are Gaspar & Antonio, whose recent work in this area is shown in Figure 5. Gaspar & Antonio in Varella, study explores the application of new technology in strategic management. This study proposes a service architecture consisting of three layers: agricultural scenario, cloud storage, and data processing. The architecture is designed to optimize agricultural operations by leveraging technological advancements to enhance data-driven decision-making.

Each layer is responsible for processing and analyzing data for decision making. The agricultural scenario layer focuses on the real-world agricultural environment, gathering data on crops, soil conditions, and weather patterns. The cloud storage layer then stores this data in a centralized, accessible location, ensuring it can be retrieved and processed efficiently. The data processing layer analyzes the stored information, applying advanced algorithms to generate actionable insights that support more informed decision-making across the agricultural value chain.

An integrated service architecture across three levels enables the development of new products for Agriculture 4.0, helping communities reduce food insecurity by creating economic, social, and environmental benefits. This innovative approach fosters sustainability and improves the resilience of agricultural systems, addressing critical issues such as food security while promoting social equity and environmental protection. By creating solutions that optimize resource use and enhance productivity, Gaspar & Antonio's research facilitates the transition to a more sustainable and efficient agricultural sector.

The study also emphasizes the importance of promoting the circular economy in Agriculture 4.0. This concept encourages the recycling of resources, the reduction of waste, and the maximization of efficiency within agricultural processes, ensuring long-term sustainability. By integrating circular economy principles into agricultural practices, Gaspar & Antonio contribute significantly to both the economic and environmental sustainability of the sector.

Therefore, these authors set the standard for food sustainability research [17]. Their work provides a roadmap for future innovations in agricultural technology, establishing a comprehensive framework that integrates strategic management and sustainability in agriculture. This pioneering study sets a benchmark for researchers and practitioners in the field, illustrating the potential of technology to drive transformative changes in food systems worldwide.

# 3.4. Source-based Bibliometric Analysis

The source-based bibliometric analysis focuses on identifying influential academic journals and sources contributing to the field of strategic management and food sustainability. The density visualization generated by VOSviewer highlights key sources based on citation and collaboration networks, allowing researchers to identify dominant journals and underexplored areas in the literature. This visualization provides an overview of how certain journals, such as Sustainability (Switzerland), stand out in terms of influence and contribution within this research domain.

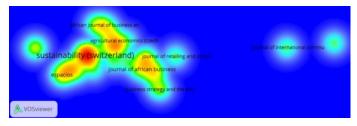



Figure 6. The density visualization of source-coupled bibliography of strategic leadership and poverty. Source: Data processing by VOSviewer (2024)

Figure 6 shows a picture of the density where sustainability stands out as the top performer. in this research field The magazine continues to publish high-impact articles on strategic management and food sustainability. This makes the magazine a major player in this field. His articles cover a wide range of topics, including corporate responsibility. Food industry innovation and sustainable supply chain management By receiving many awards Sustainability has established itself as an important source of knowledge for researchers and practitioners working on business strategy and sustainability efforts [18].

Other influential journals include Technology Forecasting and Social Change and Journal of Cleaner Manufacturing. Both editions demonstrate strict publication and citation criteria. These journals play an important role in publishing research that focuses on technological innovations and strategic approaches that address global food safety challenges through corporate strategy [19]. Their prominence in the field reflects Their important role is in shaping the debate about how businesses can adopt sustainable practices to ensure long-term food security.

Emerging journals, such as the Africa Journal of Business and Agricultural Economics (Czech), appear in the visualization with less dense fields (blue), indicating that despite the contribution of this field But it still does not have the same level of citation and influence as leading journals. The journal's focus is on regional and context-specific issues especially in emerging markets. This may explain the relatively low visibility [20]. But it continues to play a key role in gathering important insights into food sustainability and corporate strategy in developing regions.

# 3.5. Document-based Bibliometric Analysis

The document-based bibliometric analysis provides insights into the most influential publications within the domain of strategic management and food sustainability [21]. The network visualization highlights key documents based on citation and co-citation relationships, revealing significant contributions to the literature. This analysis helps identify foundational works and recent studies driving innovation in this field, focusing on themes such as AI, supply chain adaptability, and multi-stakeholder collaboration for food security.

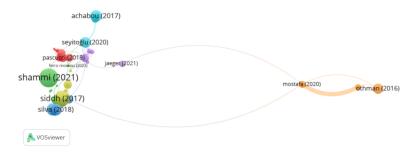



Figure 7. The network visualization of document-coupled bibliography strategic management and food sustainability.

Source: Data processing by VOSviewer (2024)

Figure 7 demonstrates that this data covers some of the most crucial documents in food security with regards to sustainability. The papers highlighted in yellow layers are also the works by Lee and Rankoohi address the application of AI and other digital technologies in food systems, arguing for their contributions to enhance resource efficiency and supply chain adaptability, with latter being crucial as it supports both coping mechanisms faced by global challenges related e.g. population increase and climate change through innovation-driven strategies [22].

On the other hand, the foundational documents marked by the blue overlay are the ones that reain relevant in today's research as well Radyi, present a framework helpful in addressing corporate social responsibility (CSR) in a practical way. that also aims at food sustainability It advocates for multi-stakeholder participation that includes business, government and NGOs. Analyzing the food sovereignty approach to the strategic implementation of fair-trade practices to the expansion of food security, also contribute greatly in this regard [23].

# 3.6. Keyword Co-occurrence Bibliometric Analysis

The keyword co-occurrence bibliometric analysis explores the thematic structure of research in strategic management and food sustainability. Using VOSviewer, the visualization highlights clusters of keywords that frequently appear together, revealing the main areas of focus in the literature. Key themes, such as 'strategic management,' 'sustainability,' and 'blockchain,' indicate the intersection of business strategies and technological advancements aimed at addressing food security challenges.

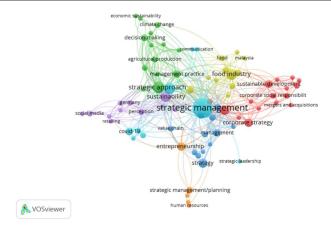



Figure 8. The network visualization of keyword co-occurrence of strategic management and food sustainability.

Source: Data processing by VOSviewer (2024)

Figure 8 as network visualization provides an analysis of the key research themes at stake in literature on strategic management and food sustainability [24]. The red cluster (with terms like strategic management, food industry or innovation) is the densest and spans topics that are mainstream in the field. This cluster is the heart of their research and shows how businesses can help advance novel solutions for food sustainability. Technology-focused terms, including AI and blockchain indicative of a trend towards technology-driven improvements in food production systems, supply chains [25]. Unpacking this cluster further is in line with growing usage of strategic management frameworks to incorporate sustainability as part of corporate operations, especially within the food sector which is faced with few challenges linked to resource efficiency and ensuring food security.

The blue cluster who looks at subjects like supply chain management, corporate responsibility and sustainability, they emphasize operational aspects of food sustainability. Food sustainability and supply chain management is considered crucial to two of the first ten food problems (reducing waste and increasing yield imbalances) raised in procuring better functioning chains are essential both, for reduction of wastes but also enlargements into under served regions [26]. Furthermore, there is a corporate responsibility aspect businesses are expected to align their strategies with the broader societal goals that these concerns encompass SDG 2.

In contrast, the green cluster focuses on business creation and corporate strategy. Business leadership integrated with organization structure is a must in ensuring these sustainability initiatives makes it to established organizations [27]. This cluster illustrates in Figure 9, a close examination of the integration process within entrepreneurial ventures and corporate leaders in sustainability as part of their strategic planning to contribute sustainable answers for global food challenges.

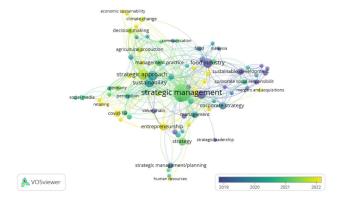



Figure 9. The network visualization of keyword co-occurrence of strategic management and food sustainability.

Source: Data processing by VOSviewer (2024)

The density map provided illustrates the keywords showing that larger nodes such as strategic management, sustainability, corporate strategy and the food industry, representing mature areas with a long history of major concerns, can be considered as advanced keywords that are trending driving the current conversation according to strategic management & food sustainability. The themes that transmit the best are essentially part of the literature dating back many years and are relevant to the current research agenda [28].

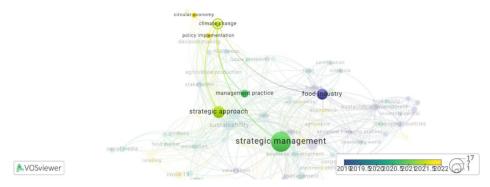



Figure 10. Detail linkage strategic management with climate change and food security. Source: Data processing by VOSviewer (2024)

On the other path, more recent key words in yellow nodes (e.g., climate change, economic sustainability and decision making) as shown in Figure 10 have been proposed directly to signal a new research trend or novelties. Especially with respect to the SDG 2, climate change and food system-related issues have become important in literature as their significance is clear for us because of global warming processes caused by manmade activities from one hand; economic adversities and deficiency crisis which are mentioned previously also another point needs vital attentions per SDGs context. this emphasis on innovation in the decision-making processes and sustainability strategies highlights two novel areas for future research to steer strategic management with sustainable food production and distribution [29].

#### 4. MANAGERIAL IMPLICATIONS

For businesses and policymakers, the study highlights the need to align corporate strategies with national free lunch programs to ensure better food security, especially for corporate employees [30]. The results show that managing supply chains sustainably, along with using advanced technologies such as AI and blockchain, can greatly improve the effectiveness of government-backed food programs [31]. For example, AI can help manage inventory and distribute food more efficiently, on target so that those who really need it, such as employees with the lowest income levels, have school-age children with limited ability to provide nutritious food and so on, and ensure resources are used well enough to support programs like free lunches [32].

The relationship between government policies and corporate responsibilities is very important to be regulated with the aim for the success of these programs. Company managers need to work closely with government agencies to ensure their corporate strategies are aligned with SDG 2 goals and national efforts to reduce hunger [33]. The study's insights are particularly relevant to entrepreneurial sectors like agripreneurship, healthpreneurship, and social entrepreneurship. Agribusiness ventures can adopt sustainable supply chain models, startups in healthpreneurship can design equitable food distribution systems using blockchain, and social entrepreneurs can address food scarcity through innovative partnerships with policymakers and corporations. By using sustainable practices in the food system and working together on programs such as free lunches, businesses can help achieve this goal, thus requiring the collaboration of all stakeholders to achieve SDG 2 [34].

#### 5. **CONCLUSION**

With a growing focus on incorporating academic findings into national policies like the new presidential free lunch program, this research highlights the crucial role that strategic management plays in addressing global food sustainability issues. Academic interest in this field has increased consistently from 2016 to 2024,

with a significant increase in research contributions in 2023. This is in line with global initiatives like SDG 2, as well as with national initiatives to increase food security through meal programs supported by the government. In areas where food security is a pressing issue, institutions like the University of Dar es Salaam Business School are leading research efforts. Their work provides valuable insights for such national programs.

This research uniquely integrates bibliometric analysis to uncover critical intersections between strategic management and food sustainability, which are pivotal for achieving SDG 2. Unlike previous bibliometric studies, it incorporates cutting-edge technologies such as AI and blockchain to optimize food supply chain systems, offering innovative solutions for hunger reduction and sustainable practices. The study's novelty lies in its identification of collaboration patterns among countries, institutions, and researchers, as well as its focus on technology-driven advancements, which challenge existing paradigms and extend the discourse on sustainability management. Furthermore, it provides actionable insights into aligning corporate strategies with governmental policies to foster impactful, sustainable food systems.

The integration of new technologies such as blockchain and artificial intelligence opens up more opportunities for food supply chain optimization rather than the use of a broad strategic management framework. This is especially important given the president's upcoming free lunch initiative, which is supposed to feed groups in need in an appropriate, sustainable and consistent manner. The use of these technologies can greatly expand the reach and efficiency of programs, and this framework is also important to support the impacts of climate change and economic sustainability when organizational leaders, as decision-makers, consider the risks that will be faced.

The findings of this study provide actionable insights into how strategic management frameworks can address the challenges of SDG 2 within specific entrepreneurial sectors. For example:

- Agripreneurship: Strategic management practices can enable agribusiness ventures to adopt sustainable
  farming methods, optimize resource allocation, and implement AI-powered solutions to reduce waste
  and improve productivity. These approaches align closely with SDG 2's goals of eliminating hunger and
  promoting food security.
- Healthpreneurship: Startups focused on public health and nutrition can leverage blockchain technology
  to ensure transparency in food distribution and improve equitable access to nutritious resources, particularly in underserved communities. These innovations directly address malnutrition and food insecurity
  challenges.
- Social Entrepreneurship: Entrepreneurs working to resolve societal issues can adopt the collaborative
  models emphasized in this study to implement impactful food security initiatives. These frameworks
  encourage partnerships between private companies, government agencies, and non-profits, facilitating
  sustainable and scalable solutions.

By making these explicit connections, the study broadens its appeal to a wider audience and highlights the practical applications of its findings in advancing SDG 2. This study provides a comprehensive analysis of strategic management's role in advancing food sustainability, aligning with SDG 2. The findings have practical implications for businesses and policymakers. For businesses, adopting AI and blockchain technologies can optimize food supply chains, reduce waste, and enhance resource efficiency. Policymakers can leverage these insights to design policies fostering collaboration between public and private sectors. Such partnerships can amplify the impact of initiatives like the Free Lunch Program, ensuring equitable access to food resources.

Moreover, this research highlights the relevance of its findings to specific entrepreneurial sectors:

- Agripreneurship: Strategic frameworks discussed in this study can help agribusiness ventures implement sustainable practices, improving productivity and reducing environmental impact.
- Healthpreneurship: Startups addressing malnutrition and public health can utilize blockchain for equitable resource distribution and ensure transparency in food programs.
- Social Entrepreneurship: Collaboration models emphasized in this research offer guidance for tackling food security challenges in underserved regions, fostering innovative and sustainable solutions.

By bridging theoretical research with actionable strategies, this study significantly contributes to the discourse on food sustainability and strategic management, making it a valuable resource for stakeholders across sectors.

# 5.1. Limitations of the Research

Scopus provides the results of relevant articles for research contributions on the management strategy and sustainability of food availability as a consequence of the new free lunch program of the President of the Republic of Indonesia used in this study needs to be developed with articles from other data, so that more bibliographies can be reviewed.

One more limit is that the search is made only for the publications within 2016–2024, which means that pre-2016 strategic actions and policy frameworks that predetermine the present day's integration of national free lunch programs could also be missed. It was also argued that extending the chronology might provide further comprehensive views on the evolution of such programs.

# 5.2. Future Recommendations for Next Authors

Applying strategic management ideas directly to national food programs needs to be the focus for future research. This will involve examining how government projects and business strategies have been successfully combined to ensure food security, in the coming years there will inevitably be many obstacles faced in the implementation of the free lunch program, which can be used for the government to come up with solutions that will definitely have an impact as well for companies to finally provide the necessary support.

Food sustainability research will be influenced by government policy in the future, therefore academic research can greatly support to find many strategies that will be impacted to corporate benefit and opportunities to enlarge the profitability associated with program expansion. Further research is needed on how blockchain technology and artificial intelligence can improve national food programs will ensure the effectiveness of the free food program by increasing transparency, reducing waste, and ensuring equitable distribution. Future research will explore also how these tools are used in real-world scenarios to assess their impact and support not only SDG 2, but also other goals of the UN Sustainable Development Goals.

## 6. DECLARATIONS

# **6.1.** About Authors

Thomas Sumarsan Goh (TS) https://orcid.org/0000-0002-3389-8107

Jaja Suteja (JS) https://orcid.org/0000-0003-0112-3152

Erika (EE) D -

Arthur Simanjuntak (AS) D -

Aldo Hermaya Aditiya Nur Karsa (AH) 🕩 https://orcid.org/0000-0002-9430-7788

Mary Angel (MA) -

# **6.2.** Author Contributions

Conceptualization: TS; Methodology: JS; Software: EE; Validation: AS and MA; Formal Analysis: JS and EE; Investigation: AH; Resources: JS; Data Curation: MA; Writing Original Draft Preparation: AS and MA; Writing Review and Editing: JS and AH; Visualization: AS; All authors, TS, JS, YS, EE, AS, AH and MA, have read and agreed to the published version of the manuscript.

# **6.3.** Data Availability Statement

The data presented in this study are available on request from the corresponding author.

# 6.4. Funding

The authors received no financial support for the research, authorship, and/or publication of this article.

# 6.5. Declaration of Conflicting Interest

The authors declare that they have no conflicts of interest, known competing financial interests, or personal relationships that could have influenced the work reported in this paper.

# REFERENCES

- [1] D. L. Lestari, Y. H. Gusmira, M. A'arif, and A. Y. Amelia, "Free nutritious meal policy as a solution to overcoming the stunting problem in indonesia," *Innovative: Journal Of Social Science Research*, vol. 4, no. 4, pp. 10021–10031, 2024.
- [2] R. A. Sunarjo, H. Supratikno, N. Sudibjo, I. Bernarto, and R. Pramono, "the mediating role of dynamic career adaptability in the effect of perceived organizational support and perceived supervisor support on work engagement of millennials," *International Journal of Entrepreneurship*, vol. 25, pp. 1–14, 2021.
- [3] M. Gigliotti, G. Schmidt-Traub, and S. Bastianoni, "The sustainable development goals," *Encyclopedia of ecology*, pp. 426–431, 2019.
- [4] A. Romero-Sánchez, G. Perdomo-Charry, and E. L. Burbano-Vallejo, "Exploring the entrepreneurial land-scape of university-industry collaboration on public university spin-off creation: A systematic literature review," *Heliyon*, vol. 10, no. 19, p. e27258, 2024.
- [5] A. Martín-Martín, M. Thelwall, E. Orduna-Malea, and E. Delgado López-Cózar, "Google scholar, microsoft academic, scopus, dimensions, web of science, and opencitations' coci: a multidisciplinary comparison of coverage via citations," *Scientometrics*, vol. 126, no. 1, pp. 871–906, 2021.
- [6] N. Van Eck and L. Waltman, "Software survey: Vosviewer, a computer program for bibliometric mapping," *scientometrics*, vol. 84, no. 2, pp. 523–538, 2010.
- [7] H. Trevena, B. Neal, S. M. Downs, T. Davis, G. Sacks, M. Crino, and A. M. Thow, "Drawing on strategic management approaches to inform nutrition policy design: an applied policy analysis for salt reduction in packaged foods," *International Journal of Health Policy and Management*, vol. 10, no. 12, p. 896, 2020.
- [8] J. Martins, R. Gonçalves, and F. Branco, "A bibliometric analysis and visualization of e-learning adoption using vosviewer," *Universal Access in the Information Society*, vol. 23, no. 3, pp. 1177–1191, 2024.
- [9] P. A. Maharani, A. R. Namira, and T. V. Chairunnisa, "Peran makan siang gratis dalam janji kampanye prabowo gibran dan realisasinya," *Journal Of Law And Social Society*, vol. 1, no. 1, pp. 1–10, 2024.
- [10] N. Lutfiani, S. Wijono, U. Rahardja, A. Iriani, Q. Aini, and R. A. D. Septian, "A bibliometric study: Recommendation based on artificial intelligence for ilearning education," *Aptisi Transactions on Technopreneurship (ATT)*, vol. 5, no. 2, pp. 109–117, 2023.
- [11] U. Rahardja, Q. Aini, A. Khairunisa, P. A. Sunarya, and S. Millah, "Implementation of blockchain technology in learning management system (lms)," *APTISI Transactions on Management*, vol. 6, no. 2, pp. 112–120, 2022.
- [12] F. I. Rankoohi, M. Mirdamadi, S. J. F. Hosseini, F. Lashgarara, and M. Rezapanah, "Development of a strategic management model for agricultural innovation systems based on agricultural researchers' viewpoints," *International Journal of Sustainable Development*, vol. 27, no. 4, pp. 355–382, 2024.
- [13] C. Grano, V. Correia, and J. C. C. Santana, "Commitment of brazilian public universities to the sustainable development goals," in *Handbook of Sustainability Science in the Future: Policies, Technologies and Education by 2050.* Springer, 2023, pp. 299–320.
- [14] Y. López-Santos, D. Sánchez-Partida, and P. Cano-Olivos, "Strategic model to assess the sustainability and competitiveness of focal agri-food smes and their supply chains: A vision beyond covid 19," *Advances in Science, Technology and Engineering Systems*, vol. 5, no. 5, pp. 1214–1224, 2020.
- [15] H. Dadhaneeya, P. K. Nema, and V. K. Arora, "Internet of things in food processing and its potential in industry 4.0 era: A review," *Trends in Food Science & Technology*, 2023.
- [16] L. A. Ibrahim, H. Shaghaleh, G. M. El-Kassar, M. Abu-Hashim, E. A. Elsadek, and Y. Alhaj Hamoud, "Aquaponics: a sustainable path to food sovereignty and enhanced water use efficiency," *Water*, vol. 15, no. 24, p. 4310, 2023.
- [17] W. A. Varella, G. C. d. Oliveira Neto, E. Stefani, I. Costa, R. C. Monteiro, W. Conde, W. da Silva Junior, R. C. Baptestone, R. d. S. Goes, R. Riccotta *et al.*, "Integrated service architecture to promote the circular economy in agriculture 4.0," *Sustainability*, vol. 16, no. 6, p. 2535, 2024.
- [18] C.-C. Lee and C.-C. Lee, "How does green finance affect green total factor productivity? evidence from china," *Energy economics*, vol. 107, p. 105863, 2022.
- [19] M. C. Franco Ceballos and F. O. Maussa Pérez, "Appropriate strategies for the use of fairtrade certification to improve the organizational climate in a fairtrade banana-producing company," *Sustainability*, vol. 14, no. 17, p. 10670, 2022.
- [20] P. S. Dewi, A. Widodo, D. Rochintaniawati, and E. C. Prima, "Web-based inquiry in science learning: Bibliometric analysis," *Indonesian Journal of Science and Mathematics Education*, vol. 4, no. 2, pp.

- 191-203, 2021.
- [21] P. K. Sarangi, P. Pal, A. K. Singh, U. K. Sahoo, and P. Prus, "Food waste to food security: Transition from bioresources to sustainability," *Resources*, vol. 13, no. 12, p. 164, 2024.
- [22] S. Bangani and L. Dube, "Academic libraries and the actualisation of sustainable development goals two, three and thirteen," *Journal of librarianship and information science*, vol. 56, no. 3, pp. 773–784, 2024.
- [23] S. A. M. Radyi, M. R. Yaacob, and A. Abdullah, "Community engagement: an integral component of csr for local development and sustainability of palm oil industry," *Academy of Strategic Management Journal*, vol. 18, no. 3, pp. 1–6, 2019.
- [24] A. Olabi, N. Shehata, E. T. Sayed, C. Rodriguez, R. C. Anyanwu, C. Russell, and M. A. Abdelkareem, "Role of microalgae in achieving sustainable development goals and circular economy," *Science of The Total Environment*, vol. 854, p. 158689, 2023.
- [25] C.-C. Huang, S.-P. Li, J.-C. M. Lai, Y.-K. Chan, and M.-Y. Hsieh, "Research on the international sustainable practice of the taiwanese food and agricultural education law under the current global food security challenges," *Foods*, vol. 12, no. 14, p. 2785, 2023.
- [26] A. Gatignon, "The double-edged sword of boundary-spanning corporate social responsibility programs," *Strategic Management Journal*, vol. 43, no. 10, pp. 2156–2184, 2022.
- [27] M. Zanetti, A. Samoggia, and J. Young, "Fruit sector strategic management: An exploration of agro-food chain actors' perception of market sustainability of apple innovation," *Sustainability*, vol. 12, no. 16, p. 6542, 2020.
- [28] S. Li, S. Y. Ang, A. M. Hunter, S. Erdem, J. Bostock, C. T. Da, N. T. Nguyen, A. Moss, W. Hope, C. Howie *et al.*, "Building towards one health: A transdisciplinary autoethnographic approach to understanding perceptions of sustainable aquatic foods in vietnam," *Sustainability*, vol. 16, no. 24, p. 10865, 2024.
- [29] R. Iagăru, A. Ṣipoṣ, and P. Iagăru, "Strategic thinking and its role in accelerating the transition from the linear to the circular economic model—case study of the agri-food sector in the sibiu depression microregion, romania," *Sustainability*, vol. 15, no. 4, p. 3109, 2023.
- [30] B. K. Paliwal and M. Wan, "Evolution of food labeling research and current publication trends: A scientometric analysis," *Journal of Scientometric Research*, vol. 13, no. 2, pp. 535–546, 2024.
- [31] T. C. de Oliveira, W. G. Sganzerla, L. C. Ampese, B. P. Sforça, R. Goldbeck, and T. Forster-Carneiro, "Sustainable valorization of apple waste in a biorefinery: a bibliometric analysis," *Biofuels, Bioproducts and Biorefining*, vol. 16, no. 3, pp. 891–919, 2022.
- [32] W. Leal Filho, A. F. F. Setti, U. M. Azeiteiro, E. Lokupitiya, F. K. Donkor, N. N. Etim, N. Matandirotya, F. M. Olooto, A. Sharifi, G. J. Nagy *et al.*, "An overview of the interactions between food production and climate change," *Science of the Total Environment*, vol. 838, p. 156438, 2022.
- [33] A. Rejeb, K. Rejeb, A. Appolloni, M. Iranmanesh, H. Treiblmaier, and S. Jagtap, "Exploring food supply chain trends in the covid-19 era: A bibliometric review. sustainability 2022, 14, 12437," 2022.
- [34] C. Mendez, M. A. Ramon-Jeronimo, and V. W. Bohorquez-Lopez, "Food waste generation behavior: A bibliographic perspective," *Available at SSRN 4528996*, 2023.