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Air quality monitoring is increasingly relying on data-driven analytic decision-
making tools to provide accurate and timely information, forming the back-
ground of this study. The objective is to understand the factors influencing the
adoption and usage behavior of these tools using the Unified Theory of Accep-
tance and Use of Technology (UTAUT2) model. The method involves incor-
porating UTAUT?2 constructs Performance Expectancy (PE), Effort Expectancy
(EE), Social Influence (SI), Facilitating Conditions (FC), Price Value (PV), He-
donic Motivation (HM), and Habit (H), alongside external variables such as Con-
sidered Risk (CR) and Considered Trust (CT). Data from 287 respondents were
analyzed to assess their impact on Behavior Intention (BI) and Usage Behavior
(UB). The results demonstrate that both trust and risk considerations signifi-
cantly affect user behavior, underscoring the need to address these factors to
enhance the adoption of air quality monitoring systems. In conclusion, this re-
search provides valuable insights for developers and policymakers on improving
the implementation and acceptance of data-driven technologies in environmen-
tal monitoring, thereby contributing to more effective air quality management.
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1. INTRODUCTION

The rapid development of technology has significantly transformed various sectors, including envi-
ronmental monitoring, where data-driven analytic decision-making tools are becoming increasingly essential
[1-3]. Air quality monitoring, a critical component of environmental health, relies heavily on the accuracy and
timeliness of data to inform policy decisions, mitigate risks, and protect public health [4-6]. The necessity
for sophisticated monitoring systems is more important than ever due to growing worries about air pollution
and its detrimental impact on human health [7]. These systems not only provide real-time data but also enable
predictive analysis that can forecast pollution trends and potential health impacts [8, 9]. However, the effective-
ness of these technologies is contingent upon their widespread adoption and consistent usage by stakeholders,
ranging from policymakers to the general public [10-12]. To optimize the use of these data-driven technologies
and increase their impact on air quality management, it is essential to comprehend the variables that drive their
acceptance and usage patterns [13, 14].

The UTAUT2 model offers a strong structure for studying factors that influence technology adoption
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and usage behavior [15]. UTAUT2 expands upon the initial UTAUT framework by including extra elements
like HM, PV, and H, which hold particular importance in the realm of individual technology adoption. This
theory suggests that PE, EE, SI, and FC play a crucial role in impacting BI and UB. Additionally, the presence
of outside factors such as CR and CT is essential in air quality monitoring, as users’ trust in data security and
technology reliability can significantly influence their readiness to utilize these systems [16—18]. This study
aims to offer a thorough insight into the factors that promote or impede the use of data-driven analytic tools in
air quality monitoring by combining these variables [19, 20].

Although there is a rising interest in air quality monitoring technologies, there is a scarce amount of
empirical research investigating the adoption and usage behavior of these tools using the UTAUT2 framework
[21-23]. Previous research has primarily examined the technical components of these systems, like sensor
precision and data algorithms, while neglecting the human elements that impact their acceptance [24]. This
literature gap underlines the importance of taking a comprehensive approach that takes into account both the
technical and behavioral aspects of monitoring air quality [25-27]. The current study aims to fill this void by
providing an understanding of how end-users perceive and use data-driven analytical decision-making tools,
thus adding to the existing knowledge base [28, 29]. The results of this study will greatly impact the develop-
ment and implementation of air quality monitoring systems, offering advice to developers, policymakers, and
other interested parties on ways to improve the integration and efficiency of these technologies in environmental
supervision [30-32].

2. LITERATURE REVIEW
2.1. Data-Driven Decision Making in Environmental Monitoring

Air quality management now relies heavily on data-driven decision-making (DDDM) in its opera-
tions. Utilizing advanced analytics and big data technologies can lead to timely, data-driven decisions essential
for mitigating negative environmental and health impacts of air pollution [33]. Current research highlights the
increasing contribution of DDDM to improving the precision and dependability of air quality forecasts. For
instance, it was shown by [34] that using machine learning models that have been trained on sizable datasets
greatly enhances the capacity for prediction of air quality monitoring systems Moreover, the deployment of In-
ternet of Things (IoT) devices and cloud-based analytics has enabled real-time data processing, further refining
the decision-making process [35]. These developments highlight how DDDM has the potential to completely
transform air quality management by offering useful insights that were previously inaccessible through con-
ventional techniques.

2.2. Artificial Intelligence in Environmental Monitoring

Artificial Intelligence (AI) has become a powerful instrument in monitoring the environment, provid-
ing notable progress in the precision, productivity, and promptness of data gathering and examination [36, 37].
Al has the ability to analyze vast amounts of data from different sources like sensors, satellite images, and
environmental databases in order to offer immediate information about environmental situations [38]. Machine
learning algorithms in air quality monitoring have the ability to forecast pollutant levels and detect patterns in
data that may not be visible with traditional analysis techniques. Al-powered technology is able to automati-
cally identify irregularities in the environment, which leads to quicker and more knowledgeable decisions when
addressing environmental shifts.

Despite the clear benefits, there are challenges associated with integrating Al into environmental mon-
itoring systems. The consistency and quality of the data used to feed Al models is one of the main problems
[39]. Environmental data can be fragmented, incomplete, or inconsistent, which can undermine the accuracy
of Al-based predictions. Additionally, the integration of Al with existing environmental monitoring infras-
tructures requires significant investments and strong policy support to ensure scalability and long-term success
[40, 41]. Nonetheless, the potential of Al to revolutionize environmental monitoring by enhancing the precision
and responsiveness of data analysis makes it a key area for future research and development.

2.3. Application of UTAUT2 in Technology Adoption

Recent studies have commonly utilized the Unified Theory of Acceptance and Use of Technology
(UTAUT?2) to examine how users accept and interact with new technologies. UTAUT2 enhances the origi-
nal UTAUT framework by including extra elements like HM, PV, and H, which are especially important for
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comprehending consumer actions in the modern digital era. Recent research has utilized UTAUT?2 in differ-
ent areas, like environmental monitoring technologies. In a study by [42], the UTAUT2 model was used to
investigate how PE and FC impact the adoption of smart home energy management systems, revealing that
they are important predictors of BI. In the same way, [43] utilized UTAUT?2 to investigate the uptake of mobile
health apps and discovered that SI and HM were key factors in user acceptance. These results indicate that
UTAUT? is a strong model for comprehending the various factors that impact technology adoption, especially
for researching the use of data-driven analytic tools in air quality monitoring [44].

2.4. External Variables in Technology Adoption: Considered Risk and Considered Trust

While UTAUT?2 provides a comprehensive framework for examining technology adoption, the inclu-
sion of external variables such as CR and CT can offer deeper insights into user behavior. CR refers to the
perceived potential negative consequences of using a technology, which can significantly hinder adoption. On
the other hand, CT relates to the user’s confidence in the technology’s reliability and security, which can en-
hance adoption. Recent research has highlighted the importance of these variables in the context of data-driven
technologies. For example, [45] found that CR was a major barrier to the adoption of cloud-based services for
environmental monitoring, as users were concerned about data privacy and security. Conversely, a study by [46]
revealed that high levels of CT positively influenced the adoption of blockchain technologies in environmental
data management. These studies highlight the critical role of perceived risk and trust in shaping user behavior,
particularly in the adoption of emerging technologies in sensitive areas such as air quality monitoring.

3.  RESEARCH METHODOLOGY
3.1. Research Design

This study adopts a quantitative method to analyze the factors shaping air quality monitoring tool
usage and adoption rates. The framework known as the UTAUT?2 provides the theoretical foundation for pin-
pointing the main factors that influence Business Intelligence (BI) and User Behavior (UB) in technology [22].
This research adds two more variables, CR and CT, to the main variables of UTAUT2 (PE, EE, SI, FC, PV, HM,
and H) because they are seen as crucial in the air quality monitoring technology field. The study also supports
Goal 13 of the SDGs calls for urgent climate action to mitigate its impacts and lower greenhouse gas emissions
by addressing how technology adoption in air quality monitoring can contribute to improving environmental
sustainability and promoting cleaner air through the use of advanced data-driven tools.
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Figure 1. Structural Model
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The relationships among these variables are visually represented in Figure 1, which illustrates the
hypothesized model tested in this study. This model provides a comprehensive view of the direct and indi-
rect paths connecting the various constructs, helping to elucidate the mechanisms through which these factors
influence user behavior in adopting air quality monitoring tools.

3.2. Measurement Items and Survey Design
The table below lists the specific measurement items used for each construct, providing a comprehen-
sive overview of the survey design.

Table 1. Measurement Items

Variable Code Statement
PE1 The effectiveness of air quality monitoring is increased by using air quality monitoring systems.
PE2 Air Quality Monitoring Systems help accomplish tasks more quickly.
PE3 The productivity of air quality monitoring is increased by air quality monitoring systems.
EE1 Learning to operate Air Quality Monitoring Systems is easy.
EE2 Utilizing Air Quality Monitoring Systems is simple.
EE3 Interaction with Air Quality Monitoring Systems is clear and understandable.
SI1 Important people think that Air Quality Monitoring Systems should be used.
SI2 People who influence behavior prefer that Air Quality Monitoring Systems are used.
SI3 Valued opinions encourage the use of Air Quality Monitoring Systems.
FC1 The necessary resources are available to use Air Quality Monitoring Systems.
FC2 The necessary knowledge is available to use Air Quality Monitoring Systems.
FC3 Air Quality Monitoring Systems are compatible with other used technologies.
PV1 Air Quality Monitoring Systems are reasonably priced.
PVv2 Air Quality Monitoring Systems provide good value for the money.
pPV3 Air Quality Monitoring Systems offer a good cost-benefit ratio at the current price.
HM1 Using Air Quality Monitoring Systems is enjoyable.
HM2 The use of Air Quality Monitoring Systems is fun.
HM3 Air Quality Monitoring Systems are entertaining.
H1 Using Air Quality Monitoring Systems has become a habit.
H2 Addicted to using Air Quality Monitoring Systems.
H3 Must use Air Quality Monitoring Systems.
BI1 Intend to use Air Quality Monitoring Systems regularly.
BI2 Always try to use Air Quality Monitoring Systems in daily work.
BI3 Plan to continue using Air Quality Monitoring Systems frequently.
UBI1 Every day, air quality monitoring systems are employed.
UB2 Air Quality Monitoring Systems are used whenever necessary.
UB3 Air quality is monitored using Air Quality Monitoring Systems.
CR1 Air Quality Monitoring Systems’ security is a concern.
CR2 Worried that Air Quality Monitoring Systems might not be secure.
CR3 Air Quality Monitoring Systems raise privacy concerns.
CTl1 Trust Air Quality Monitoring Systems to provide accurate information.
CT2 Air Quality Monitoring Systems are believed to be reliable.
CT3 Trust Air Quality Monitoring Systems to perform their intended function properly.

Table 1 the specific measurement items used to assess the various constructs in this study, focusing
on the adoption and usage behavior of Air Quality Monitoring Systems. Each item is designed to capture a
distinct aspect of the theoretical framework based on the UTAUT2 model, as well as additional variables such
as Considered Risk and Considered Trust. The survey was structured to gather respondents’ perceptions across
multiple dimensions, including PE, EE, SI, FC, PV, HM, H, BI, UB, CT, and CR. The items were carefully
worded to ensure clarity and relevance, ensuring that each construct is accurately measured in the context of
air quality monitoring technology.
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3.3. Data Analysis Techniques

The analysis of PLS-SEM data was performed using SmartPLS software. Due to its capability to
manage complex models with a multitude of latent variables and indicators, along with its adaptability to
analyze non-normally distributed data, PLS-SEM was chosen for this study. The evaluation process started by
assessing the measurement and structural models for both construct validity, reliability, and hypothesis testing.
Validity and reliability were assessed using the Fornell-Larcker Criterion, Average Variance Extracted (AVE),
and Composite Reliability (CR). Hypothesis tests were performed to determine if the independent variables
significantly impacted the dependent variables.

This paper would benefit from a more detailed discussion of the limitations of the PLS-SEM method
used in this study. Highlighting potential biases, such as those that may arise from small sample sizes or
non-normal data distribution, would increase the transparency of the methodology. Acknowledging these limi-
tations, along with discussing potential weaknesses of the approach, would not only enhance the robustness of
the findings but also provide a more balanced perspective on the reliability of the results.

3.4. Population and Sample

The population in this study consists of users of air quality monitoring technologies across various
regions represented in table 2. A sample of 350 respondents was initially collected, with 287 valid data points
remaining after the screening process. This sample was selected using purposive sampling, where respondents
were chosen based on specific criteria relevant to the research objectives, such as their experience in using air
quality monitoring technologies and their knowledge of its functionalities.

Table 2. Demographic Population Sample

Demographic Information Categories Frequency (n) Percentage (%)
Gender Male 145 50.50%
Female 142 49.50%
18-25 years 67 23.30%
26-35 years 89 31.00%
Age Group 36-45 years 79 27.50%
46-55 years 32 11.10%
56 years and above 20 7.10%
Less than 1 year 81 28.20%
Experience with Air Quality Monitoring 1-3 years 115 40.10%
More than 3 years 91 31.70%
Low 42 14.60%
Familiarity with Technology Moderate 129 44.90%
High 116 40.40%

The sample for this study consists of 287 valid respondents, with a nearly equal distribution of gender:
50.5% male and 49.5% female. The majority of respondents fall within the 26-35 years age group (31.0%),
followed by the 36-45 years group (27.5%), 18-25 years group (23.3%), 46-55 years group (11.1%), and
those aged 56 years and above (7.1%). Regarding education level, most respondents hold a Bachelor’s De-
gree (58.5%), with 23.7% having a Master’s Degree, 11.8% a High School education, and 5.9% a Doctorate
Degree. In terms of occupation, 49.8% of the respondents are professionals, followed by students (20.6%), aca-
demics/researchers (16.0%), and others (13.6%). Concerning experience with air quality monitoring, 40.1%
of respondents have 1-3 years of experience, 31.7% have more than 3 years, and 28.2% have less than 1 year.
The sample also shows a balanced distribution of technological familiarity, with 44.9% reporting moderate
familiarity, 40.4% reporting high familiarity, and 14.6% reporting low familiarity

4. RESULT
4.1. Outer Model

The reliability and validity of the study’s constructs were confirmed through the evaluation of the outer
model. Ensuring consistency and accuracy in measuring latent variables relies heavily on this analysis. Both
construct reliability, convergent validity, and discriminant validity were assessed.
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4.1.1 Construct Reliability and Convergent Validity

We examined Cronbach’s alpha, Composite Reliability (rtho_a and rho_c), and Average Variance Ex-
tracted (AVE) to assess the construct’s reliability. These metrics provide insight into the constructs’ internal
coherence and relationships with other factors.

Table 3. Construct Reliability and Convergent Validity

Variable Cronbach’s Composite Composite Average variance

alpha reliability (rho_a) reliability (rho_c) extracted (AVE)
BI 0.83 0.841 0.898 0.747
CR 0.868 0.869 0.919 0.791
CT 0.772 0.859 0.86 0.673
EE 0.815 0.819 0.89 0.73
FC 0.878 0.887 0.925 0.804
H 0.711 0.767 0.84 0.643
HM 0.821 0.823 0.893 0.737
PE 0.889 0.898 0.931 0.818
PV 0.892 0.893 0.933 0.822
SI 0.864 0.865 0.917 0.787
UB 0.86 0.861 0.915 0.781

The Cronbach’s alpha values for all constructs in table 3 are higher than the accepted threshold of 0.7,
demonstrating strong internal consistency. As an example, SI has a Cronbach’s alpha coefficient of 0.864, while
PV shows an even higher alpha of 0.892. The Cronbach’s alpha for H is the lowest at 0.711, which, although
lower, still falls within the acceptable range. Composite Reliability (tho_c) further confirms the reliability of
the constructs, with values ranging from 0.84 (H) to 0.933 (PV). It is important to mention that all constructs
surpass the suggested threshold of 0.7 for rho_c, showing that the constructs effectively capture the underlying
variables.

The Average Variance Extracted (AVE) values, which assess the variance attributed to the construct
relative to measurement error, also support convergent validity. Every AVE value surpasses the 0.5 threshold,
indicating that the constructs represent most of the variance in their respective indicators. Especially noteworthy
findings are seen in PV, which has an AVE of 0.822, and FC, which has an AVE of 0.804.

The findings show that all the variables employed in this research are dependable and accurate, ensur-
ing the strength of the measurement model. The strong values of Cronbach’s alpha, Composite Reliability, and
AVE indicate that the constructs are clearly defined and accurately measured, providing a solid basis for further
analysis in the inner model.

4.1.2 Discriminant Validity

To ensure that each concept in the model remains unique, discriminant validity must be established.
Using the Fornell-Larcker criteria, each construct’s square root AVE had to surpass its correlations with other
components for assessment.

Table 4. Discriminant Validity Fornell-Larcker Criterion
Variable  BI CR CT EE FC H HM PE PV SI UB
BI 0.864
CR 0.753  0.89
CT 0.715 0.634 0.821

EE 0.8 0728 0.62 0.854
FC 0.784 0.805 0.602 0.799 0.896
H 079 0.698 0.63 0.726 0.79 0.802

HM 0.802 0.761 0.68 0.813 0.807 0.768 0.858
PE 0.75 0771 0.681 0.856 0.74 0.672 0.814 0.904
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Variable  BI CR CT EE FC H HM PE PV SI UB
PV 0.806 0.806 0.71 0.821 0.869 0.772 0.825 0.819 0.907
SI 0.779 0.684 0.627 0.861 0.83 0.772 0.806 0.807 0.836 0.887
UB 0.824 0.786 0.716 0.813 0.742 0.757 0.846 0.805 0.842 0.784 0.884

Diagonal elements in table 4 equal the square roots of AVEs, while off-diagonal values represent
correlations. The square root of BI’s correlation with AVE is larger (0.864) than its correlations with CR
(0.753) and CT (0.715). The square root of UB’s AVE is 0.884, greater than its correlations with CR (0.786)
and CT (0.716). FC’s discriminant validity, as measured by its square root of AVE (0.896), surpasses its highest
correlation with PV (0.869). The pattern is consistent for most constructs, suggesting each measures a unique
concept within the model.

The outer model analysis confirms the dependability and authenticity of the study’s constructs. The
soundness of the measurement model relies on the high construct reliability and strong discriminant validity
across all variables.

4.2. Inner Model

The inner model, often referred to as the structural model, looks at how the study’s latent variables
relate to one another. This section will focus on analyzing the Cross Loadings and the results of hypothesis
testing, using the path coefficients derived from the Bootstrapping mode.

4.2.1 Cross Loadings

Cross loadings provide insight into how each indicator correlates with its assigned construct compared
to other constructs. A well-fitting model should have higher loadings of indicators on their respective constructs
than on other constructs, indicating good discriminant validity.

Table 5. Cross Loadings
Variable  BI CR CT EE FC H HM PE PV SI UB

BIl 0.889 0.697 0.575 0.715 0.769 0.787 0.748 0.697 0.696 0.686 0.741
BI2 0.899 0.716 0.667 0.736 0.684 0.7 0.747 0.702 0.767 0.733 0.74
BI3 0.8 0523 0.616 0.616 0566 0542 0.57 0.532 0.618 0.592 0.652
CRI1 0.652 0.877 0.557 0.616 0.699 054 0.604 0.634 0.709 0.556 0.679
CR2 0.679 0908 0.589 0.596 0.717 0.602 0.657 0.642 0.713 0.561 0.678
CR3 0.677 0.883 0.547 0.723 0.731 0.712 0.763 0.772 0.726 0.698 0.737
CT1 0.437 0303 0.701 0.228 0.346 0419 0345 0306 0.364 0255 0.362
CT2 0.682 0.682 0.866 0.698 0.601 0.588 0.708 0.734 0.744 0.717 0.761
CT3 0.584 0.464 0.882 0456 0469 051 0517 0509 053 0427 0.522
EEl 0.628 0.497 0411 0.823 0.582 0.561 0.61 0.597 0.593 0.634 0.629
EE2 0.717 0.738 0.595 0.893 0.762 0.604 0.725 0.806 0.807 0.767 0.759
EE3 0.702 0.616 0.572 0.846 0.693 0.692 0.742 0.778 0.693 0.796 0.691
FCl1 0.607 0.648 041 0.662 0.893 0.69 0.656 0.561 0.675 0.697 0.551
FC2 0.719 0.692 0.527 0.753 0913 0.761 0.749 0.669 0.803 0.801 0.656
FC3 0.763 0.808 0.656 0.724 0.884 0.672 0.754 0.738 0.838 0.728 0.765
H1 0.729 0.6 055 0.705 0.787 0905 0.727 0.568 0.724 0.798 0.719
H2 046 0391 0415 0279 0312 0.606 0437 0368 0324 0301 0416
H3 0.678 0.658 0.542 0.683 0.717 0.862 0.646 0.648 0.735 0.673 0.646
HM1 0.719 0.706 0.583 0.79 0.744 0.702 0.884 0.754 0.811 0.748 0.77
HM2 0.664 0.547 0.528 0.638 0.714 0.669 0.849 0.619 0.659 0.717 0.634
HM3 0.682 0.702 0.639 0.661 0.619 0.604 0.841 0.719 0.648 0.609 0.772
PE1 0.732 0.698 0.608 0.819 0.697 0.612 0.74 0921 0.744 0.76 0.719
PE2 0.695 0.698 0.615 0.801 0.676 0.638 0.78 0916 0.752 0.762 0.761
PE3 0.597 0.698 0.63 0.692 0.63 0569 0.685 0.875 0.728 0.659 0.705
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Variable  BI CR CT EE FC H HM PE PV SI UB
PV1 07 0743 0.629 0.756 0.772 0.707 0.713 0.727 0.922 0.776 0.788
PV2 0.759 0.788 0.716 0.795 0.794 0.665 0.787 0.844 0.908 0.774 0.784
PV3 0.729 0.659 058 0.679 0.795 0.728 0.741 0.651 0.89 0.724 0.717
SI1 0.68 0.617 0.555 0.762 0.781 0.686 0.723 0.75 0.746 0.889 0.68
SI2 0.682 0.616 0.578 0.76 0.728 0.68 0.69 0.721 0.755 0.887 0.693
SI3 0.71 0587 0.536 0.768 0.701 0.688 0.732 0.678 0.725 0.885 0.712
UB1 0.723 0.695 0.698 0.698 0.612 0.629 0.723 0.675 0.726 0.626 0.879
UB2 0.739 0.634 0.563 0.75 0.648 0.657 0.753 0.717 0.723 0.749 0.867
UB3 0.725 0.752 0.633 0.711 0.707 0.721 0.769 0.743 0.782 0.708 0.905

As shown in table 5, the indicators generally exhibit higher loadings on their respective constructs,
which is consistent with the expected measurement model. For instance, the indicators BI1, BI2, and BI3,
which belong to the BI construct, have loadings of 0.889, 0.899, and 0.8 on their own construct, respectively.
These values are significantly higher than their cross-loadings on other constructs, such as CR (0.697, 0.716,
and 0.523, respectively) and CT (0.575, 0.667, and 0.616, respectively). Similarly, the CR construct indicators
CR1, CR2, and CR3 show strong loadings of 0.877, 0.908, and 0.883 on their construct, compared to their
cross-loadings on other constructs like BI (0.652, 0.679, and 0.677, respectively). This pattern is repeated
across most constructs, indicating good discriminant validity.

Social Influence |
. (sI) {

N\
Usage Behavior ‘

Figure 2. Structural Model

The structural model with path coefficients and R? values is shown in Figure 2, providing a visual
depiction of the connections between the components. The path coefficients indicate the strength of the con-
nections between variables, such as the influence of Habit (H) on Behavioral Intention (BI) with a coefficient
of 0.285, and the strong impact of BI on Usage Behavior (UB) with a coefficient of 0.431. Other variables,
like Performance Expectancy (PE) and Effort Expectancy (EE), show weaker effects on BI with coefficients of
0.023 and 0.247, respectively. The model also reveals that Considered Risk (CR) and Considered Trust (CT)
significantly affect UB, with path coefficients of 0.340 and 0.192.

The R? values in the model show that 76.2% of the variance in BI is explained by the independent
variables (R2 = 0.762), while 76.0% of the variance in UB is accounted for by BI, CR, and CT (R? = 0.760).
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The figure also displays the loadings of each indicator on its respective construct, such as PE1 (0.921) and
BI1 (0.889), which reflect the reliability of these indicators in measuring the intended constructs. This model
provides a clear overview of how the constructs interact and influence each other in the context of Air Quality
Monitoring Systems adoption and usage.

4.2.2 Summary of Hypotheses Testing Results

The hypotheses testing results provide insights into the significance of the relationships between the
latent variables. These relationships are analyzed using the path coefficients, which are derived from the Boot-
strapping mode. Significant relationships are determined by examining the t-statistics and p-values.

Table 6. Hypothesis Testing Results
Original sample Sample mean Standard deviation T statistics

Variable (0) M) (STDEV) (|0/STDEV]) P values
EE ->UB 0.107 0.104 0.07 1.517 0.129
FC ->UB 0.022 0.025 0.07 0.318 0.75

H->UB 0.123 0.118 0.048 2.565 0.01
HM ->UB 0.082 0.077 0.065 1.253 0.21
PE ->UB 0.01 -0.015 0.077 0.129 0.898
PV ->UB 0.075 0.086 0.064 1.167 0.243
SI->UB -0.006 0.019 0.086 0.07 0.944

The outcomes of the hypothesis testing are displayed in table 6. An example is the significant connec-
tion between BI and UB, showing a strong positive impact with a path coefficient of 0.431, t-statistic of 5.166,
and p-value of 0.000. There is also a notable connection found between CR and UB, with a path coefficient
of 0.34, t-statistic of 3.35, and p-value of 0.001. This indicates that the perceived risk is a major factor in
determining users’ interactions with air quality monitoring technology.

Nevertheless, certain relationships do not have a significant statistical value. In this case, the coeffi-
cient for the path from FC to BI is 0.052, with a t-statistic of 0.326 and a p-value of 0.744, suggesting that FC
might not have a considerable influence on Bl in this scenario.

In conclusion, the inner model examination uncovers numerous noteworthy connections among con-
structs, particularly in the relationships from BI to UB, and from CR and CT to UB. These results emphasize
how user perceptions play a crucial role in the acceptance and utilization of data-based air quality monitoring
technologies. The findings suggest that in this particular situation, certain commonly regarded factors like FC
and SI may not carry as much weight.

4.3. Testing of Mediation Effects

Mediation effects refer to the indirect effects that one variable has on another through a mediating
variable. In this study, the mediation effects were tested to understand how certain independent variables
influence the dependent variable UB through an BI. The results of the mediation tests are summarized in table
7.

4.3.1 Indirect Effects

The indirect effects were evaluated using the bootstrapping method, which provides robust estimates
of the mediation paths. The significance of these paths is determined by examining the t-statistics and p-values.

Table 7. Mediation Effects Testing
Original sample Sample mean Standard deviation T statistics

Variable (0) (M) (STDEYV) (|0/STDEV]) P values
EE ->UB 0.107 0.104 0.07 1.517 0.129
FC ->UB 0.022 0.025 0.07 0.318 0.75

H->UB 0.123 0.118 0.048 2.565 0.01
HM ->UB 0.082 0.077 0.065 1.253 0.21

APTISI Transactions on Technopreneurship (ATT), Vol. 6, No. 3, November 2024, pp. 418-431



APTISI Transactions on Technopreneurship (ATT) a 427

Original sample Sample mean Standard deviation T statistics

Variable (0) (M) (STDEV) (|0/STDEV)) P values
PE ->UB 0.01 -0.015 0.077 0.129 0.898
PV ->UB 0.075 0.086 0.064 1.167 0.243
SI->UB -0.006 0.019 0.086 0.07 0.944

As shown in table 7, the mediation effect of H on UB through BI is significant, with an indirect effect
coefficient of 0.123, t-statistic of 2.565, and p-value of 0.01. This indicates that H has a meaningful indirect
influence on UB, suggesting that users’ habitual engagement with the system strongly impacts their actual
usage behavior when mediated by their behavioral intention.

Another pathway examined was the mediation effect of EE on UB. The results indicate a positive
but non-significant indirect effect with a coefficient of 0.107, t-statistic of 1.517, and p-value of 0.129. This
suggests that while EE might influence UB through BI, the effect is not statistically significant in this model.
The FC variable shows an even weaker indirect effect on UB, with a coefficient of 0.022, t-statistic of 0.318,
and p-value of 0.75. This result indicates that FC do not significantly mediate the relationship between these
variables. On the other hand, HM exhibits a positive indirect effect of 0.082 on UB, but this effect is not signif-
icant with a t-statistic of 1.253 and a p-value of 0.21. This indicates that while users may derive enjoyment or
satisfaction from the system, this motivation does not significantly translate into actual usage behavior through
their behavioral intentions. For PE, the mediation effect is minimal and not significant, with a coefficient of
0.01, t-statistic of 0.129, and a p-value of 0.898. Similarly, PV shows a non-significant indirect effect on UB,
with a coefficient of 0.075, t-statistic of 1.167, and p-value of 0.243.

Lastly, SI exhibits a negative and non-significant mediation effect on UB with a coefficient of -0.006,
t-statistic of 0.07, and p-value of 0.944, suggesting that social factors do not significantly influence users’
behavior through their intentions.

4.3.2 Interpretation of Results

The results from the mediation analysis suggest that Habit (H) is the most significant mediator among
the variables tested, indicating that habitual usage of the system strongly influences the actual usage behavior
via users’ behavioral intentions. This underscores the importance of fostering user habits to ensure consistent
engagement with the technology. These findings contribute to the existing body of knowledge in the fields of
Al and environmental monitoring by demonstrating how habitual behavior plays a key role in the sustained use
of data-driven technologies for air quality monitoring.

On the other hand, variables such as FC, EE, and PV do not show significant mediation effects, in-
dicating that these factors may influence UB directly rather than through BI. Moreover, the non-significant
mediation effects of PE and SI suggest that these factors may not play a critical role in shaping actual system
usage when mediated by behavioral intentions. These findings could have important implications for future
research and policy-making, particularly in designing interventions and strategies to promote technology adop-
tion. Understanding which factors have the most influence on user behavior could guide the development of
more effective Al-driven solutions in environmental monitoring and inform future policies aimed at increasing
the adoption of these technologies.

5.  MANAGERIAL IMPLICATIONS

The findings of this study provide valuable insights for managers and decision-makers involved in the
development and implementation of data-driven air quality monitoring technologies. First, the significant role
of Habit in influencing UB highlights the importance of designing systems that encourage frequent and consis-
tent use. Managers should focus on creating user-friendly interfaces and providing continuous support to foster
habitual engagement with the technology. This can be achieved through user training, effective onboarding,
and regular updates that enhance user experience and system efficiency.

Additionally, the findings suggest that PE and SI have a relatively minor effect on user satisfaction
and behavior in this context. Managers should, therefore, shift their focus from merely emphasizing system
performance and peer influence to more critical factors like FC and CT. Building user trust in the technology’s
accuracy and security, particularly in sensitive fields like environmental monitoring, is crucial. Organizations
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must ensure that the technology is secure, reliable, and provides real-time, accurate data to foster greater user
trust and confidence. Furthermore, incorporating feedback from users to continuously improve the system’s
functionality and alignment with user needs will strengthen long-term adoption and utilization, contributing to
environmental sustainability goals.

6. CONCLUSION

The findings of this study highlight that Habit (H) is the most significant variable influencing User
Satisfaction in the context of data-driven air quality monitoring technologies. The mediation analysis reveals
that H not only directly impacts Usage Behavior (UB) but also serves as a strong mediator between Behavioral
Intention (BI) and actual usage. This underscores the critical role that habitual engagement plays in user
satisfaction, suggesting that fostering user habits through consistent and positive experiences can significantly
enhance the adoption and sustained use of these technologies.

In contrast, variables such as Effort Expectancy (EE), Facilitating Conditions (FC), and Price Value
(PV) were found to have a weaker and non-significant impact on User Satisfaction when mediated by BI. Social
Influence (SI) and Performance Expectancy (PE) were also non-significant, suggesting that peer influence and
users’ expectations of performance do not substantially affect their satisfaction with the technology. However,
this study differs from previous research in its application of the UTAUT2 model to air quality monitoring
technologies, where certain constructs, such as Habit, play a more dominant role. The comparison with prior
studies highlights the unique context of this study and suggests that some variables, traditionally significant in
other technological contexts, may not have the same influence here.

Despite these insights, this study has some limitations that should be acknowledged. The sample size,
while adequate, may not fully capture the diversity of user experiences across different regions and techno-
logical environments. Additionally, while the application of UTAUT? in this context is relatively new, further
emphasis could be placed on explicitly comparing the results to previous studies in similar fields to better high-
light the model’s novel application. Future research could expand on this by exploring additional factors, such
as technological anxiety or data trust, and by conducting longitudinal studies to understand how user satisfac-
tion evolves over time, as well as performing comparative studies across different technological contexts to
assess the generalizability of these findings.
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