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ABSTRACT

Travel pattern variations pose challenges in building a prediction model that ac-
curately captures seasonal patterns or precision of BRT passenger numbers. An
approach that integrates sophisticated prediction algorithms with high accuracy
is needed to address the Transjakarta BRT passenger number prediction model
problem. The proposed prediction model with the best accuracy is sought us-
ing deep learning on 8 models. The prediction model is used for short-term and
long-term predictions, as well as looking for correlations in the prediction results
of 13 Transjakarta corridors. The Python programming language with the Deep
Learning Tensor Flow framework is run by Google Colaboratory used in the pre-
diction simulation environment. The combination of BiLSTM-CNN was found
to have the best accuracy of the evaluation value (SMAPE = 15.9387, MAPE =
0.598, and MSLE = 0.0425), although it has the longest time (134 seconds).
Fluctuations in short-term predictions of passenger numbers evenly occur si-
multaneously across all corridors. Fluctuations in long-term predictions evenly
occur simultaneously across all corridors, except in February. There is no nega-
tive correlation in the 13 prediction results and there are 8 corridors that have a
close positive correlation. The prediction results can be used by transportation
operators and the government to optimize resource planning and transportation
policies to support sustainable community and economic mobility.
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1. INTRODUCTION
Road public transport passengers continue to increase along with increasingly complex mobility needs

[1, 2] amidst increasing urbanization and population growth [3, 4]. The social, economic, and demographic
diversity of society can be seen from road public transport passengers [5]. Road public transport can continue
to play a role as the backbone of mobility, supporting economic growth [6, 7], and the quality of life of its
passengers in agglomeration areas [8]. Road public transport passengers need accessibility to various destina-
tions such as workplaces, schools, markets, or shopping centers [9]. The challenges of comfort, safety, and
punctuality are often the main concerns for passengers [10]. The behavior and habits of road public transport
passengers are important factors in creating a harmonious road transport system [1, 9]. External factors such as
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road infrastructure conditions, traffic congestion, and operational management of transport affect the passen-
ger experience [5, 6]. A deep understanding of the needs and behavior of public transport passengers is very
important in designing a more effective and sustainable road public transport system [11, 12]. Road transport
passengers are a central element in the public transport system that reflects the diversity of mobility needs of
the community [13]. Bus Rapid Transit (BRT) passengers who come from various social and economic groups
are an important indicator in measuring the sustainability of the road public transport system as part of a strate-
gic economic infrastructure [14, 15]. BRT passengers come from various backgrounds such as office workers,
students, and the general public who prioritize speed, punctuality, and comfort [16, 17]. Relatively affordable
fares make BRT an inclusive transportation alternative, especially for lower-middle class communities [18, 19].
The existence of BRT encourages local economic growth through increased commercial activity around BRT
stops or corridors [20, 21]. The challenges of BRT in meeting the needs of its passengers are passenger density,
limited fleet, and integration between other modes of transport [22, 23]. The success of BRT in attracting pas-
sengers is highly dependent on factors such as comfort, safety, and reliability of the services offered [24, 25].
Understanding the needs and preferences of BRT passengers is very important to ensure the sustainability of the
road public transportation system [26, 27]. BRT as a mode of road public transportation that can accommodate
a large number of passengers is the main catalyst for sustainable economic development to overcome mobility
challenges in urban areas [28].

Various passenger flow prediction techniques are conducted by identifying key parameters to over-
come the challenges of road public transport in urban areas [29]. The TSD-ST (Time Series Decomposition-
Spatiotemporal) model provides an average accuracy improvement of 21.87% in predicting multi-station bus
public transport passenger flow compared to previous methods [30]. A realistic MATSim (Multi-agent, Activity-
based, Travel demand Simulator) based BRT travel demand prediction model in Dhaka is significantly affected
by sensitivity to travel time, cost, and multimodal access [31]. The Artificial Neural Network(ANN) model
shows higher travel time prediction accuracy compared to the regression model, especially on BRT routes with-
out signalized intersections [32]. The DAMSCN (Dual Attention Multi-Scale Convolutional Network) model
is used to predict short-term origin-destination Xiamen BRT (XMBRT) and Shanghai Metro (SHMetro) with
improved prediction accuracy and stability compared to the best baseline with significant reduction in MAE and
RMSE [33]. Deep Sailfish Network (DSFN) for passenger prediction and fuzzy logic for route changes were
used in the prediction model of four BRT routes from Gujarat India which proved superior accuracy based on
MAPE and RMSE metrics [34]. The Multitask Deep Learning-Service level Passenger Flow Prediction(MDL-
SPFP) model with ARM network resulted in bus passenger flow prediction with 22.39% accuracy improvement
compared to the best baseline [35]. The best prediction model for Transjakarta BRT passenger number was
obtained from the combination of BiLSTM-CNN with high accuracy at the lowest MSLE, MAPE, and SMAPE
values, although it required longer computation time [36]. The deep learning approach was used for the predic-
tion model with greedy layer-wise algorithm, LSTM, and RNN to process cluster data, eliminate redundancy,
and produce accurate passenger flow prediction and revenue estimation in Karnataka State Road Transport
Corporation Bus Rapid Transit (KSRTCBRT) [37].

Variations in travel patterns pose challenges in building predictive models that can accurately capture
seasonal patterns or short-term fluctuations [38]. Passenger data is affected by inaccurate recording, lack of
integration of electronic ticketing systems with operational data, or limited historical data that can reduce the
reliability of predictive models [39]. Predictive models often have difficulty accommodating factors that are
unpredictable or difficult to measure [40]. The complexity of variables often involved in predictive models
affects the risk of overfitting the training data [41]. Unbalanced data distribution makes predictive models less
effective in estimating the number of passengers on a particular route due to bias towards routes with dominant
data [42]. Models that are too complex or require a lot of computing resources become impractical to implement
in a BRT operational environment [32]. Predictive models that are not built based on historical data have
difficulty adapting quickly to changes that occur [43–45]. An approach that integrates sophisticated prediction
algorithms with high accuracy using high-quality and real-time data is needed to overcome the problems of BRT
passenger prediction models [46]. Long and short term predictions of Transjakarta BRT passenger numbers
are essential to improve operational efficiency and optimize the expenditure of available resources [36, 47–
50]. High accuracy prediction is needed by Transjakarta BRT for the mission of minimizing operational costs,
maximizing revenue, reducing social costs, and increasing economic productivity. The search for the best
accuracy prediction model is proposed using the deep learning approach of LSTM and BiLSTM models with
a combination of CNN, GRU, and Transformer evaluated by MAPE, SMAPE, and MSLE. Comparison of the
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lowest value of the 3 evaluation matrices and the time required is the basis for selecting the best prediction
model. Short-term predictions (the next 30 days) and long-term predictions (the next 12 months) of the number
of passengers and the strong correlation of the Transjakarta BRT corridor are carried out by the best prediction
model. This prediction model has never been done in the field of road public transportation and has become a
necessity for Transjakarta BRT. The prediction results can be used to create a road public transportation system
that is more efficient, sustainable, and responsive to passenger needs. The prediction results of the number
of Transjakarta BRT passengers can be used to support infrastructure planning, transportation policy decision
making, and improve service quality.

2. RESEARCH METHOD
The CSV dataset was collected with the contents of the date and number of passengers for each

private Transjakarta BRT corridor. Transjakarta BRT was taken as a case study because the center of BRT
transportation system development is in the largest urban agglomeration area with the highest complexity in
Indonesia. The Python programming language with the Tensor Flow deep learning framework was run by
Google Colaboratory on the macOS Venture 13.5 Operating System and 8 GB of RAM was used in the pre-
diction simulation environment. Minmax feature scaling was used for initial data processing which was then
divided into two segments (training and testing). The LSTM, LSTM-CNN, LSTM-GRU, LSTM-Transformers,
BiLSTM, BiLSTM-CNN, BiLSTM-GRU, BiLSTM-Transformers models were run to find the best prediction
model based on the best accuracy value given by 3 evaluation matrices (MSLE, MAPE, and SMAPE). The low-
est evaluation value from the experiment became the best model. The prediction model architecture produces
the best prediction model for predicting short-term (next 30 days) and long-term (next 12 months) passenger
numbers, as well as Transjakarta BRT corridor relationships in Figure 1.

Figure 1. Prediction Model Architecture

Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory (BiLSTM) are vari-
ants of Recurrent Neural Networks (RNN) designed to process sequence data such as text, speech signals, and
time-series data [51–54]. LSTM is designed to process and make predictions based on time-series data [55–57].
LSTM processes sequential data by receiving the current input (xt) and the previous hidden output (ht−1). The
forget gate determines the information to be forgotten, while the input gate adds new information to the cell
memory [58–60]. The output gate produces the hidden output (ht). The output gate produces the hidden output
(ht) passed to the next step which allows LSTM to capture long-term and short-term relationships effectively
[61, 62]. BiLSTM processes sequential data in two directions (forward and backward) combining information
from the past and future to produce a richer representation at each time step [36, 54, 63]. A BiLSTM unit
generates two hidden states, one from the forward LSTM (ht) and one from the backward LSTM (ht) at each
time step t. The two hidden states are combined to produce the final representation (ĥt = [ht, ht]) [64, 65]

The consistency and speed of the proposed prediction model performance are seen from 3 types of
evaluation matrices, namely MSLE, MAPE, and SMAPE. Mean Squared Logarithmic Error (MSLE) measures
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the error between the predicted value and the actual value by comparing the logarithm of both to emphasize
relatively smaller errors and reduce the impact of outliers. MSLE measures the average of the logarithm of
the squared error between the predicted and actual values [66] (Equation 1). Mean Absolute Percentage Error
(MAPE) measures the prediction error by calculating the average of the absolute percentage error between the
predicted value and the actual value to provide a proportional picture of the model accuracy. MAPE divides
each error based on its respective request [67] (Equation 2). Symmetric Mean Absolute Percentage Error
(SMAPE) measures the prediction error by calculating the average of the normalized absolute percentage error
using the average of the predicted value and the actual value to ensure symmetry. SMAPE is a percentage and
is not scale-dependent, so it can be used to evaluate the prediction performance of time series data sets [68]
(Equation 3). SMAPE values that are increasingly close to 0 indicate increasingly better model performance
[55].

MSLE =
1

n

n∑
i=1

(
log(yi + 1)− log(ŷi + 1)

)2
, (1)

MAPE =
1

n

n∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ , (2)

SMAPE =
1

n

n∑
i=1

∣∣ŷi − yi
∣∣∣∣yi∣∣+ ∣∣ŷi∣∣ . (3)

3. RESULT AND DISCUSSION
The historical dataset contains the daily number of passengers for each Transjakarta BRT corridor,

recorded from January 1, 2021, to December 31, 2023. The preprocessed data is provided in a Comma-
Separated Values (CSV) file with 1,095 entries. The dataset consists of 14 columns: DATE, representing the
date, and K1–K13, which contain the number of passengers for each corridor (1–13) of the Transjakarta BRT.
See Figure 2.

Figure 2. Dataset

Minmax feature scaling divides 80% training data and 20% testing data. The prediction models used
for the experiment are LSTM, LSTM-GRU, LSTM-CNN, LSTM-Transformers, BiLSTM, BiLSTM-GRU,
BiLSTM-CNN, and BiLSTM-Transformers. Parameter settings for each prediction model with 2 hidden lay-
ers, activation hyperbolic tangent (tahn), dropout 0.20, epoch 60, batch size 16, verbose 1, and adam optimizer.
These parameter provisions are proven to be the most appropriate for the LSTM model [36, 53, 54]. The most
optimal accuracy value of the 3 evaluation matrices is BiLSTM-CNN (SMAPE = 15.9387, MAPE = 0.598, and
MSLE = 0.0425). The BiLSTM model has a higher accuracy than LSTM. BiLSTM and LSTM combined with
GRU, CNN, and Transformers are proven to improve accuracy. The best combination for BiLSTM and LSTM
is with CNN which produces the best accuracy value compared to GRU and Transformers (Figure 3). The
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power of BiLSTM is able to capture richer temporal relationships by utilizing information from both directions
(forward and backward) compared to LSTM which only works in one direction [36, 69]. The combination
becomes more optimal with the addition of CNN which is able to capture spatial features or local patterns in
the data, strengthening the feature representation before the classification or prediction process. Each model
has a specific role in strengthening the generalization ability of the main model, but CNN has proven to be the
best match because of its strong ability to extract features from sequential data, resulting in better accuracy
values compared to combinations with GRU or Transformers. The hybrid approach by combining the power
of BiLSTM to process long-term dependencies with the ability of CNN to capture local patterns is an effective
strategy to maximize accuracy.

Figure 3. Prediction Model Experiment

The fastest prediction time model is owned by the LSTM model (31 seconds), but the evaluation value
of the 3 evaluation matrices is still high compared to other prediction models. The longest time is BiLSTM-
CNN (134 seconds), but the evaluation value of the 3 evaluation matrices is the lowest compared to the others
(Figure 4). The high speed of LSTM is due to its architecture which only processes data in one direction, thus
reducing computational complexity [59]. The one-way approach does not sufficiently capture more complex
temporal relationships in the data, resulting in a still high evaluation value. The long computation time of the
BiLSTM-CNN combination can be explained by the nature of BiLSTM which processes data in two directions
(forward and backward) and the addition of CNN which adds a layer of feature processing. This combination
allows the model to capture temporal and spatial patterns in more depth and produce more accurate prediction
performance, although it requires more computational time. These results indicate a trade-off between speed
and accuracy in model selection. LSTM is suitable for use if prediction speed is a priority such as real-time
applications. BiLSTM-CNN is more ideal for high accuracy which is preferred, although it requires longer
computation time. Model selection should consider the specific needs of the application to be applied.
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Figure 4. Prediction Model Time

The proposed deep learning approach prediction model with a combination of BiLSTM-CNN per-
forms short-term (30 days later) and long-term (12 months later) predictions of the number of passengers on
13 Transjakarta BRT corridors at the same time. The prediction of the number of passengers for the next 30
days is consistently the highest in corridor 1, while the lowest is in corridor 11. Fluctuations in the number of
daily passengers evenly occur simultaneously in all corridors. The number of passengers at the beginning of the
month increases and decreases quite sharply, but tends to be stable at the end of the month. Several corridors
intersect from the beginning of the month to the end of the month in corridors 3, 5, 6, 7, 8, 9, 10, 12, and 13.
See in Figure 5).

Figure 5. Predictions For The Next 30 Days

Corridor 1 has the highest number of passengers over 30 days, indicating high demand on the route.
This may indicate that the corridor serves areas with high economic activity, such as business centers, markets,
or industrial areas. Transportation managers can focus on increasing service capacity in this corridor, such as
increasing the number of fleets, improving infrastructure, or increasing the frequency of departures to accom-
modate user needs [15]. The consistently low number of passengers in corridor 11 may reflect a lower level of
economic activity in the area. This opens up opportunities for further study of the low number of passengers
which may be caused by lack of accessibility, lack of promotion of transportation services, or minimal eco-
nomic activity in the area. Development efforts such as improving connectivity or encouraging investment in
this area can help increase the use of transportation services and economic activity [16].

Fluctuations in the number of passengers that occur evenly across the corridor reflect uniform travel
patterns that can be influenced by the daily cycle of community activities such as work, school, or other routine
activities. Sharp increases and decreases at the beginning of the month indicate the influence of the monthly
economic cycle, such as salary receipts or community spending patterns. This understanding can be used to set
promotional or incentive strategies, such as fare discounts or adding fleets at certain times to maximize revenue.
The number of passengers that tends to be stable at the end of the month indicates a more predictable travel
pattern. This provides an opportunity for transportation operators to optimize resource management, such as
more efficient travel schedules and more even fleet distribution [17]. Several intersecting corridors reflect high
interconnections between regions. This shows the importance of coordinated management to ensure smooth
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passenger movement in these corridors. Strategies such as schedule integration, adding connecting routes, or
implementing integrated fares can improve passenger comfort and the efficiency of the transportation system.
The prediction of the number of passengers for the next 12 months is consistently the highest in corridor 1,
while the lowest is in corridor 12 which is adjacent to corridor 11. Fluctuations in the number of monthly
passengers evenly occur simultaneously in all corridors, except in February where 12 corridors experienced
an increase and 1 corridor experienced a decrease (Corridor 5). The number of passengers from February to
December tends to be stable. There are no overlapping corridors in all months. See in Figure 6.

Figure 6. Predictions For The Next 12 Months

Corridor 1 remains the busiest over the 12 months, indicating that the corridor serves an area of high
economic activity, such as a central business district, commercial district, or high-density population. This con-
sistency underscores the importance of the corridor as the backbone of the transportation system. Infrastructure
and service investments are needed to support economic efficiency, such as the acquisition of additional fleets,
increased service schedules, or improvements to supporting facilities [18]. Corridor 12, which has the lowest
ridership and is close to corridor 11, suggests that there may be limited economic activity in the area. This may
also reflect limited accessibility or lack of transportation integration. Governments or transportation operators
may want to evaluate the potential for development in the area, such as improving connectivity to areas with
higher economic activity or encouraging local economic growth through infrastructure investment [19]. The
consistent monthly ridership fluctuations across the corridors reflect a uniform seasonal pattern that is likely
influenced by economic cycles, weather, or community habits. The anomaly in February where 12 corridors
experienced an increase while Corridor 5 experienced a decrease could be caused by specific factors, such as
changes in travel patterns, rerouting, or certain events affecting the Corridor 5 area. A more in-depth evaluation
is needed to understand these factors and optimize services in Corridor 5 during the month. The number of pas-
sengers that tended to be stable from February to December indicates the consistency of transportation demand.
This stability provides advantages for transportation operators in planning resources, including fleet distribu-
tion, travel schedules, and operational budget allocations. This stability allows for more efficient planning to
support the sustainability of public transportation services [21, 22]. The absence of overlapping corridors indi-
cates that each corridor serves a unique and separate route. This can indicate the clarity of the market segment
or area served by each corridor. Opportunities to improve integration between corridors can be explored to
drive transportation efficiency and improve passenger mobility across regions.

Correlation Network Graph is used to present close correlation (positive blue line and negative red
line) in the prediction results of 13 Transjakarta BRT corridors. There is no negative correlation in the 13
prediction results, while there are 8 corridors that have close positive correlation (Corridor 3, Corridor 6,
Corridor 7, Corridor 8, Corridor 9, Corridor 10, Corridor 11, and Corridor 13), the rest have positive but
not close correlation. The most close positive correlations are in corridor 8 and corridor 10 as many as 5
correlations. Corridor 8 has a close positive correlation with Corridor 3, Corridor 11, Corridor 10, Corridor 9,
and Corridor 13. Corridor 10 has a close positive correlation with Corridor 3, Corridor 11, Corridor 8, Corridor
9, and Corridor 6. The least close positive correlation only has 1 relationship, namely in corridor 7 with corridor
3 see in Figure 7.
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Figure 7. Prediction Correlation Heatmap

The absence of negative correlations between the predicted number of passengers on the 13 corridors
indicates that the movement of the number of passengers in each corridor is mutually supportive. An increase
or decrease in the number of passengers in one corridor tends not to hinder activity in other corridors. This
reflects a well-integrated transportation system in each corridor serving complementary, not competing, needs.
The 8 corridors with close positive correlations indicate that the areas served by the corridors have strong
economic relationships. These corridors may connect areas with mutually supportive economic activities, such
as business districts, housing, or shopping centers. Management can focus on improving connectivity and
efficiency in these corridors to provide significant economic impacts [24, 26]. Strong relationships reflect
important passenger flows to support economic activities. Corridors 8 and Corridor 10 have the highest number
of close positive correlations (5 correlations), indicating that these corridors are strategic routes that play an
important role in connecting various regions. Corridor 8 serves areas with diverse and strategic economic
activities, while Corridor 10 shows a central role in supporting mobility in the connected areas. Investments in
Corridor 8 and Corridor 10 provide broader economic benefits due to their correlation with other regions, such
as infrastructure, fleet, and supporting facilities. Other corridors with positive but weak correlations reflect
weak or specific economic relationships between regions. Corridor 7 and Corridor 3 correlations indicate
that the influence between regions is not very significant. This provides an opportunity to evaluate whether
connectivity in these corridors can be improved or whether the areas served need additional economic support
to strengthen relationships [41]. These results can be used to direct transportation and economic strategies by
focusing on corridors with strong correlations, encouraging investment in areas with strong positive correlation
corridors, maximizing economic synergies between regions, and strategic interventions to improve economic
integration and mobility.

The BiLSTM-CNN prediction model produces short-term predictions, long-term predictions, and cor-
relations of prediction results. The short-term prediction results can be used to improve the efficiency of public
transportation services, support economic growth in strategic areas, and reduce inequality in access between
regions. Transportation operators and governments can use the results to optimize resource planning and short-
term transportation policies to support sustainable community mobility [42]. The long-term prediction results
show the importance of segmented and data-based transportation management. Corridors with high demand
(Corridor 1) require adequate infrastructure support to maintain efficiency and comfort. Corridors with low de-
mand (Corridor 12) require strategic interventions to encourage their use, including regional development and
connectivity. Analysis of monthly fluctuations and long-term stability provides opportunities for operational
optimization and sustainable service plannin [46]. The strong positive correlation between BRT corridors in-
dicates the potential for strong economic ties in the areas served. Focusing on improving services in strategic
corridors can have broad economic impacts [13]. Further analysis of corridors with limited correlation can help
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identify opportunities to improve connectivity and synergies between regions. This allows the transportation
system to be more efficient and supports sustainable economic growth.

4. MANAGERIAL IMPLICATIONS
The findings of this study provide valuable insights for improving the management and efficiency of

the Transjakarta BRT system. The predictive model helps transportation operators allocate resources effectively
by identifying high-demand corridors that require increased service capacity and optimizing fleet distribution.

Additionally, accurate passenger forecasts enable better planning for infrastructure investment, en-
suring that public transport remains reliable and efficient. Policymakers can use these insights to enhance
connectivity between corridors, improve service quality, and develop sustainable urban mobility strategies.

By leveraging data-driven decision-making, Transjakarta can optimize operations, reduce costs, and
enhance the overall passenger experience while supporting economic growth in key areas.

5. CONCLUSION
This study evaluates eight deep learning-based prediction models for forecasting Transjakarta BRT

passenger numbers, with the BiLSTM-CNN model demonstrating the highest accuracy. Although this model
requires the longest computation time, it effectively predicts both short-term and long-term passenger trends
while identifying correlations across 13 Transjakarta corridors. The findings indicate that Corridor 1 consis-
tently has the highest passenger count, while Corridor 12 has the lowest, with demand fluctuations occurring
uniformly across most corridors except in February. Additionally, eight corridors exhibit strong positive corre-
lations, indicating interconnectivity in passenger movement.

These results provide valuable insights for optimizing fleet management, improving service efficiency,
and informing data-driven transportation policies. By leveraging predictive analytics, operators and policy-
makers can enhance the planning of public transportation services, ensuring better resource distribution and
connectivity across Jakarta’s transit network.

For future research, integrating additional external factors such as weather conditions, economic fluc-
tuations, and policy changes could refine prediction accuracy. Furthermore, incorporating Origin-Destination
(OD) modeling would offer deeper insights into passenger movement, enabling more precise adjustments to
service distribution and reducing congestion at key transit points. Expanding this model to cover intermodal
transportation, including MRT and LRT, could further enhance its applicability in urban mobility planning.
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