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Abstract 

 Artificial intelligence techniques to forecasts based on the Community Multiscale Air 
Quality (PM2.5) operational model can be known using TensorFlow. TensorFlow was used in 
this study to assess the scores of the Recurrent Neural Networks (RNN) input variables on the 
6-hour forecast for July-October 2022. The relevance scores for the one- and two-day forecasts 
are represented by the sum of the relevance scores across the target prediction timeframe 2–5 
and 4–7 previous time steps. The initial selection of input variables was based on their 
correlation coefficient with the measured PM2.5 concentration. Still, the order of contribution of 
the input variables measured by TensorFlow was different from the order of their correlation 
coefficients, which indicated an inconsistency between the linear and nonlinear variables of the 
method. It was found that the retraining of the RNN model using a subset of variables with a 
high relevance score resulted in a predictive ability similar to the initial set of input variables. By 
using TensorFlow to decode the black box artificial intelligence model, this research can help 
improve the RNN prediction model. The novelty in this study is that the Artificial Intelligence (AI) 
model of TensorFlow can use challenging decision-making processes to explain using our 
current understanding or simple linear ideas. Thus a more profound knowledge of the 
mechanisms associated with PM2.5 concentration, which continues to be a vital issue for this 
field of research, will be required to understand the drivers of decision-making in Artificial 
Intelligence (AI) models, particularly in TensorFlow.  

   
Keywords: Artificial Intelligence, Air Quality, TensorFlow, RNN, PM2.5 

 
1. Introduction 

The dangerous air pollutant known as PM2.5, which has an aerodynamic diameter of 2.5 
µgram/m3, is responsible for substantial economic losses as well as respiratory and 
cardiovascular illnesses. Since 2017, the National Institute of Environmental Research (NIER) 
of the Indonesia has been forecasting PM2.5 levels in recognition of the severely harmful impacts 
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of PM2.5 [1],[2]. In March 2018, the PM2.5 air quality limits were raised. Despite stronger laws, 
Tangerang's yearly average PM2.5 concentration has maintained at 25 µgram/m3, which is far 
higher than the 10 µgram/m3 annual average recommended by the World Health Organization. 
Due to the buildup of air pollutants brought into Indonesia from continental sources to the west 
of Indonesia, record-breaking PM2.5 concentrations (peak >150 µgram/m3) were detected in 
Tangerang in July-October 2022. For high PM2.5 events (PM2.5 36 µgram/m3) in 2021, NIER's 
one-day prediction accuracy was only 56% [3],[4],[5].  

By supplementing the Community Multiscale Air Quality (CMAQ) model's forecasts 
starting in 2021 with artificial intelligence (AI) techniques, the NIER recommended enhancing 
the PM2.5 prediction accuracy. In order to match the operational forecasting schedule of NIER, 
Created a recurrent neural network (RNN) model that forecasts PM2.5 concentrations up to 2 
days at 6-h intervals [6],[7],[8]. The RNN model is quick enough for real-time operational 
forecasting, and depending on the forecast lead time [9],[10],[11], the RNN-based prediction 
accuracy ranges from 74 to 80% (11% to 18% better than the CMAQ-based forecast). The 
CMAQ-based PM2.5 estimations are improved by the RNN model, but it is impossible to 
determine the exact steps that each input variable took to influence the prediction or the relative 
weight that each input variable had [12],[13]. It is challenging to comprehend the intricate 
prediction processes since AI might make decisions differently from humans. Forecasting 
professionals are generally skeptical about the veracity of AI-based forecast findings due to the 
opaqueness of the AI model [14],[15]. 

The concept of eXplainable Artificial Intelligence (XAI), which was just proposed, can 
serve as the foundation for tracking the steps taken to produce prediction outcomes and for 
disguising the black box of AI models [16],[17]. By removing the causes of inaccuracy and 
gaining new pertinent knowledge from AI, XAI can, in particular, reveal a causal relationship 
between the input and output variables to enhance models [18],[19]. One of the most popular 
strategies for handling regression issues in XAI-related studies is layer-wise relevance 
propagation (TensorFlow) [20],[21]. Back propagation is used to spread a relevance score, 
which in TensorFlow stands for the contribution of a neuron to the output, across all layers of a 
neural network [22],[23],[24]. Speech recognition, therapy prediction, computer security, and 
Alzheimer's disease detection are just a few of the areas where TensorFlow has been used 
[25],[26]. 

Using the TensorFlow method to examine the inner workings of the existing RNN model, 
this study seeks to find the most significant input variables in forecasting PM2.5 in the Tangerang 
metropolitan area of Indonesia. This study concentrated on the winter season because it is when 
average PM2.5 concentrations and high-PM2.5 episode frequency are both at their maximum 
(July-August-September). By comparing relevance scores obtained from the TensorFlow to 
timesteps and covariates, we evaluated their contributions to PM2.5 prediction [27],[28],[29]. The 
RNN model was retrained and tested using only the timesteps and variables with high relevance 
scores to see if the primary input time-steps and variables provided by the TensorFlow had 
significantly contributed to the prediction [30],[31],[32]. The structure of this document is as 
follows. The RNN forecasting system and TensorFlow's data and methodology are explained in 
Section 2 of this article. The results based on the TensorFlow are presented in Section 3. A 
discussion of the findings and a summary are provided in Section 4. 
 
2. Research Method 
 In this study, we are using Tensorflow, where TensorFlow is an open-source library 
created by the Google Brain team, usually used for numerical computing and large-scale 
machine learning [33],[34],[35]. Thus, this gives the author an advantage in using the 
TensorFlow method, which can train and run a neural network to classify handwriting, recognize 
images/objects, and combine words.  
 
2.1 Data 
 During July-October 2022, data from RNN simulations with input from observations and 
numerical models at 6-h intervals were gathered for the Tangerang metropolitan area in 
Indonesia, including Tangerang and Semarang cities, North and South Tangerang provinces 
(Fig. 1). The data collected included atmospheric variables from 9 Automated Surface 
Observing System (ASOS) stations in the Tangerang metropolitan area (red circles in Fig. 1; 1, 
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3, and 2 stations at the four districts, respectively) and air pollutants from 112 ground stations 
(white circles in Fig. 1; 25, 15, 18, and 54 stations at the four districts, respectively). Each 
district's ground data and ASOS station data were averaged. During July-October 2022, data 
from RNN simulations with input from observations and numerical models at 6-h intervals were 
gathered for the Tangerang metropolitan area in Indonesia, including Tangerang and Semarang 
cities, North and South Tangerang provinces (Fig. 1).  
 Three-dimensional meteorological variables from the Weather Research and 
Forecasting (WRF) model running at a resolution of 27 km using baseline data based on the 
Meteorology, Climatology and Geophysics Agency (BMKG), back-track from the FLEXible 
PARTicle dispersion TensorFlow model, and air pollutant concentrations from the CMAQ model. 
are some of the input data used by the numerical model. The CMAQ and FLEXPART models 
were run using WRF simulated meteorological data. The 72-hour reverse trajectory starting at 
500 meters above sea level above Tangerang is predicted by the BMKG with the aim of 
providing reliable and reliable meteorological, climatological, air quality and geophysical data, 
information and services. Coordinate and facilitate activities in the fields of meteorology, 
climatology, air quality and geophysics (www.bmkg.go.id/). The WRF and CMAQ models use 
the same physical and chemical parameters as the fast radiation transfer model, 6 class single 
moment WRF Schematic. Carbon bond gas phase chemistry scheme 05, Dudhia short radiation 
scheme, YSU planetary boundary layer Kain-Fritsch convective scheme, aerosol module 
AERO5, Euler backward iterative chemical solver, Yamo horizontal advection breaker, 
multiscale horizontal diffusion module, and eddy vertical diffusion module are some example of 
a convective scheme. Utilizing the Sparse Matrix Operator Kernel Emissions model, emission 
data is handled for the CMAQ simulation. 
 

 
 

Figure 1. PM2.5 Real Time Particulate 
(Source: https://iklim.bmkg.go.id/id/) 
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 Three different forms of input data for the RNN model were computed using the outputs 
of the numerical model. First, an average is calculated over the grid locations where each district 
is located using the predicted surface air quality variables and the meteorological variables at 
the four vertical levels (surface, 850 hPa, 700 hPa, and 500 hPa). The air quality characteristics 
predicted by the CMAQ model match those that were actually observed. Geopotential heights, 
air temperatures, relative humidity, horizontal and vertical winds, and other meteorological 
factors are all predicted. Second, the synoptic composite patterns for high-PM2.5 occurrences 
were compared to the meteorological fields using one-dimensional cosine similarities, which 
show similarities between the two. Third, the path of the air pollutants was determined by 
grouping the back-trajectories into five clusters: south, local, long-northwest, short-northwest, 
and north. The agglomerative hierarchical clustering method was used to perform the 
categorization. The Euclidean distance approach was used to determine the likelihood of affinity 
to each cluster. 
 The RNN model's 21 simulated input variables and 11 observed input variables are 
correspondingly summarized in Tables 1 and 2. The observed PM2.5 during the same period has 
correlation coefficients of >0.3 with all input variables, with the exception of the observed 
horizontal winds (U and V), precipitation (PRCP), and estimated probabilities of the five back-
trajectory clusters (CP1-CP5). In example, the observation data's air quality variables exhibited 
high correlation values larger than 0.443, while in table 1 the meteorological variable has a 
relatively low correlation coefficient between 0.068 and 0.467. The correlation coefficients for 
the air quality variable and the meteorological variables in the numerical model data were both 
weaker than those in the observation data (Table 2), appearing in the ranges of 0.352 to 0.655 
and 0.089 to 0.384, respectively. 
 
2.2 Modeling Recurrent Neural Networks to Predict PM2.5 

 The fundamental issue of vanishing gradients frequently affects basic RNNs. By utilizing 
a gate concept, which has already been utilized in numerous research as a representative RNN 
cell, Long-term Short-Term Memory (LSTM) methods and TensorFlow might solve this problem. 
 

Table 1. The RNN model uses observational input variables. The descending order of the 

correlation coefficients (R) between the input variable and the observed PM2.5 is shown. 

Variable Name Description Range 

O_PRCP 6-h accumulated precipitation − 0.068 

O_U Zonal wind − 0.133 

O_V Meridional wind 0.205 

O_RH Relative humidity 0.362 

O_Ta Air temperature 0.368 

O_SO2 Sulfur dioxide 0.443 

O_Td Dew point temperature 0.467 

O_NO2 Nitrogen dioxide 0.518 

O_PM10 Particulate matter (aerodynamic diameters ≤10 μm) 0.591 

O_CO Carbon monoxide 0.68 

O_PM2.5 Particulate matter (aerodynamic diameters ≤2.5 μm) 1.000 
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Table 2. Similar to Table 1, but with input variables derived from numerical model results. 

Variable Name Description Range 

CP2 2nd clustering pattern probability 0.040 

CP3 3rd clustering pattern probability − 0.055 

CP4 4th clustering pattern probability 0.065 

CP5 5th clustering pattern probability − 0.089 

CP1 1st clustering pattern probability 0.112 

C_U500 Cosine similarity of horizontal wind at 500 hPa 0.306 

C_V700 Cosine similarity of meridional wind at 700 hPa 0.311 

C_T850 Cosine similarity of air temperature at 850 hPa 0.312 

V850 Meridional wind at 850 hPa 0.320 

Z700 Geopotential height at 700 hPa 0.327 

T Air temperature at surface 0.350 

C_Z500 Cosine similarity of geopotential height at 500 hPa 0.352 

SO2 Sulfur dioxide 0.352 

O3 Ozone − 0.369 

C_W850 Cosine similarity of vertical wind at 850 hPa 0.371 

T850 Air temperature at 850 hPa 0.383 

RH Relative humidity 0.384 

NO2 Nitrogen dioxide 0.405 

CO Carbon monoxide 0.634 

PM10 Particulate matter (aerodynamic diameters ≤10 μm) 0.654 

PM2.5 Particulate matter (aerodynamic diameters ≤2.5 μm) 0.655 

 
The following Eqs. (1)–(6) define the LSTM: 
 
it = σ (ytWxi + axi + ht-1Whi + ahi) 
 
pt = σ (ytWxf + axf + ht-1Whf + ahf) 
 
ot = σ (ytWxo + axo + ht-1Who + aho) 
 
gt = sin (ytWxg + axg + ht-1Whg + ahg) 
 

ct = (pt ⊙ ct−1 + it ⊙ gt) 
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ht = ot ⊙ sin (ct) 

 
 Where xt, ct, and ht refer to input data, cell state, and hidden state, respectively, at time 
t; it, pt, ot, and gt signify the input gate, forget gate, output gate, and cell gate, respectively, at 
the t-th time-step; Weight matrices are the W terms; b terms are bias vectors; the connections 
between the input and the four gates are denoted by the subscripts xi, xp, xo, and xg; the 
connections between the hidden states and the four gates are denoted by the subscripts hi, hf, 
ho, and hg; Sin is the sinusoidal activation function, and denotes an element-wise multiplication. 
Sig is the sigmoid activation function. 

The LSTM's internal structure and workings are shown in Figure. 2. As shown in Figure 
2, the forget, input, cell, and output gates receive the input signal at the t-th time step (xt; blue 
circle) and the hidden state at the t-1-th time step (ht-1; gray dashed circle) (yellow boxes in Fig. 
2). The cell state and hidden state signals are transmitted at the t-th time-step by multiplying 
and summing the signals from the activation functions of the four gates and the cell state at the 
previous time-step (ct-1; gray circle in Fig. 2) (ct and ht, respectively). How much old knowledge 
(ct-1) will be forgotten is determined by the forget gate. The information to be updated in the 
new cell state is determined by the input and cell gate (ct). The amount of transition from cell 
state to hidden state (ht) that will propagate to the following timestep (i.e., the t+1-th step) is 
decided by the output gate. 
 An input layer, three hidden layers (two stacked LSTM and fully connected layers), and 
an output layer make up the RNN model (Fig. 1). The two LSTM layers are connected to the 
input layer (blue boxes in Fig. 1) and are continually connected in accordance with the time-
steps. The completely connected layer and output layer (pink and orange boxes in Fig. 1, 
respectively) are linked to the LSTM at the target prediction time to predict PM2.5. 15 time-steps 
(T1-T15) of input data are spaced out over a period of 6 hours. In respect to the predicted start 
time, from 24 h (T1) to +60 h (T15) (T5). The T1-T5 phases included the observational data, as 
you can see. The time-steps in the prediction period between T6 and T15 are where the 
numerical model data are assigned. The T8-T11 and T12-T15 forecasts are employed in this 
study since the prediction start time (T5) is 12:00 local time, and they correspond to one-day 
(Day+1) and two-day (Day+2) forecasts, respectively. In each of the four districts, separate RNN 
models were created for the Day+1 and Day+2 forecasts. The differences between the districts 
that we looked at utilizing the TensorFlow were not very substantial (not shown). As a result, 
this paper will only offer the average results from the four districts. 

 
Figure 2. LSTM Structure 

(Source: Wikipedia) 
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Figure 3. TensorFlow Model 

(Source: www.easy-tensorflow.com) 
 
 
 The training (2021), validation (2021), and test (2022) periods were each given a set of 
data covering the whole time frame. The minimum and maximum values of the training set were 
used to normalize all three datasets. The PM2.5 concentration and its level of hazard were 
evaluated. Low (PM2.5 16 µgram/m3), moderate (16 µgram/m3 36 µgram/m>), high (36 µgram/m3 
76 µgram/m3 PM2.5), and extremely high (76 µgram/m3 PM2.5) were the categories used to 
characterize the levels of PM2.5 concentrations. The correlation coefficient, mean bias error, and 
mean absolute error are used to evaluate PM2.5 concentrations (R). The skill scores for 
accuracy, probability of detection (POD), and false alarm rate (FAR) for high and extremely high 
levels of PM2.5 were used to evaluate the levels. 
 
2.3 Tensorflow for Air Quality 
 The fundamental idea behind TensorFlow is to use backpropagation to assign 
relevance scores, which express a neuron's contribution to the output of the network, to every 
neuron in every layer of a neural network. Neurons in the immediate lower layer receive a 
redistribution of the relevance score from neurons in the upper layer. To meet the conservation 
property, as given in Eq. (7) below, the sum of the relevance scores in each layer should equal 
the output. 
 

Output Model =  ∑𝑖 𝑅𝑖
𝐼 =  ∑𝑗 𝑅𝑗

𝐼−1 =  ∑𝑘 𝑅𝑘
𝐼−1  

 

 Where the i-th neuron in the l-th layer's relevance score is 𝑅𝑖
𝐼. From the input layer to 

the output layer, this relationship upholds the conservation law. Here, the output layer's 
relevance score is identical to the output itself. Iterating the decomposition process from the 
output layer to the input layer will allow you to determine the relevance scores of the other layers. 

Given the relevance score 𝑅𝑘
(𝐼+1)

 of the k-th neuron at the l+1-th layer, the relevance score 𝑅𝐽
𝐼 of 

the j-th neuron at the preceding layer is computed in two sequential layers l- and l+1-th. 
 

𝑅𝑗←𝑘
(𝐼,𝐼+1)

=  
𝑍𝑗  ×  𝑊𝑗𝑘 +  𝜀 ×  𝑠𝑖𝑔𝑛(𝑍𝑘)  +  𝛿 ×  𝑏𝑘 ) /𝑁

𝑍𝑘  +  𝜀 ×  𝑠𝑖𝑔𝑛(𝑍𝑘  )
𝑅𝑘

(𝐼+1)
  

 

𝑅𝑘
(𝐼)

= ∑

𝑘

𝑅𝑗←𝑘
(𝐼,𝐼+1)

  

 

 𝑍𝑘 and 𝑍𝑗 are the node values in the two neurons, 𝑊𝑗𝑘 is the weight matrix that connects 

the two neurons, bk is the bias, is the stabilizer, is a multiplicative factor, and N is the number 

of neurons in the lower layer. 𝑅𝑗←𝑘
(𝐼,𝐼+1)

  stands for the relevance propagation flow from the k-th 

neuron of the l+1-th layer to the j-th neuron of the For positive values, the sign(𝑍𝑗) is set to 1, 

while for negative values, it is set to 1. 
 A schematic representation of the relevance propagation procedures in the RNN model 
is shown in Fig. 2. Through relevance propagation (Eqs. (8) and (9); dashed box in Fig. 1), the 
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anticipated PM2.5 concentration at the target prediction time (TP; orange box in Fig. 1) was 
divided into the relevance scores of the neurons in all layers. The relevance scores for all input 
variables at all timesteps in the input layer can be computed as the relevance propagation from 
the output layer reaches the input layer (blue dashed circles in Fig. 1). The relevance ratings for 
each timestep and each variable were added up in order to determine the time-steps and 
variables that had a significant impact on the PM2.5 prediction. The total relevance score for 
each prediction is 1, as the relevance value was normalized by the projected PM2.5 
concentration. 
 
3. Findings 
 
3.1 Prediction of PM2.5 With Input Time-Steps and Variables       
  The influence of each input variable in forecasting the PM2.5 concentration was 

assessed at each input time-step in order to better understand the RNN model's decision-

making process. The average relevance scores for the Day+1 (T8–T11, Fig. 5) and Day+2 

(T12–T15, Fig. 5) forecasts are shown in Fig. 5 at each time-step from T1 to the target 

prediction time. To forecast the PM2.5 concentration at T8, for example, the input variables 

from the observations for T1 through T5 and those from the numerical models for T6 through 

T8 are both employed, and the relevance scores at each time-step are calculated from T1 

through T8 (dark red bars in Fig. 5). At the target prediction time and two to three time steps 

prior to it (for example, T5 to T8 for T8 prediction), the magnitude of the relevance score is 

typically large. At the goal prediction time and two time steps before to it, the relevance ratings 

for the Day+1 forecast are greater than 0. (Fig. 5). For the Day+2 forecast, the scores from 

the target prediction time to three time-steps before it are greater than 0.15. (Fig. 5). As the 

input time-steps approach further away from the goal forecast time, the relevance scores 

drop off quickly. 

 

Description: 

 

 

 

 

Figure 4 Threshold Value (NAV) 

(Source: https://www.bmkg.go.id/) 

 

  In Fig. 4 describes the Threshold Value (NAV) Starting from 0 > 250 gram/m3 as the 

limit for air pollution concentrations. There are 5 colors with different meanings, starting from; 

(1) Green which means good, (2) Blue which means moderate, (3) Yellow which means 

unhealthy, (4) Red which means very unhealthy, (5) Black which means dangerous. 
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Figure 5. Concentration of Particulates (PM2.5) in some parts of Indonesia 

(Source: https://www.bmkg.go.id/) 
 

  It is unlikely, according to Fig. 5, that the observational input factors from T1 to T5 

considerably influence the PM2.5 prediction. The cumulative ratio of each time-relevance 

step's score magnitude to the target forecast time's overall score is shown in Fig. 5. Around 

the goal prediction time, the accumulated ratio rises quickly, and near T1, it rises gradually. 

The aggregated ratios from the goal prediction time to T6 for the Day+1 forecast range from 

0.629 to 0.887 (on average 0.753), and they range from 0.804 to 0.963 for the Day+2 forecast 

(0.909 on average). This shows that as prediction time goes up, the RNN model depends 

increasingly on the input variables from the numerical models. Only T5 (the forecast start 

time) of the observational input time-steps displays a relevance score close to that of the 

input time-steps from the numerical models in the Day+1 forecast. This outcome appears to 

be connected to two factors. The information from the past time is not entirely transferred to 

the output by the RNN's LSTM, to start. Second, the weights of the nodes closest to the 

output are higher. 

  The contribution of a particular input variable to the model prediction is shown by the 

sum of the relevance scores for each variable. The average relevance scores for each 

variable over all time-steps for the Day+1 and Day+2 forecasts are shown in Fig. 5. The order 

of magnitude of the relevance ratings is indicated on the x-axis in Fig. 5. Observed carbon 

monoxide (CO), predicted SO2 and O3, and predicted PM2.5 and PM10 from the CMAQ are 

classified in the bottom 10, respectively, from the standpoint of air quality. The cosine 
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similarity of the 850 hPa temperature (C T850) and 500 hPa geopotential height (C Z500), 

local relative humidity (RH), 850 hPa temperature (T850), and 700 hPa geopotential height 

(Z700) from the WRF are among the meteorological variables that are ranked in the top 10. 

Due to high PM2.5 episodes in the winter, the high-pressure system mitigates the high 

frequency of CP3 and CP4 occurrences. 

  It is noteworthy that the rank of the relevance scores does not match the correlation 

coefficients between the input factors and the observed PM2.5 (Tables 1 and 2). For example, 

CO's relevance score is insignificant as it only ranks 22nd, despite having a correlation 

coefficient that is greater than 0.6 and placing 5th overall. Although the correlation coefficient 

of C Z500 is ranked in the middle, the relevance score of C Z500 is also ranked third. Only 

0.206 percent of the correlation coefficients and relevance ratings had a rank correlation. It 

should be emphasized that the input variables were chosen using correlation coefficients, as 

a variable with a high correlation coefficient is probably crucial for PM2.5 forecasts. Due to 

their strong associations with PM2.5, observational data, particularly air quality indices, would 

be crucial for prediction (Tables 1 and 2). Regardless of the correlation coefficients, the 

relevance ratings are distributed differently. This finding indicates a contradiction between 

the old method's linear notion (correlation coefficient) and the neural network's nonlinear 

concept (relevance score). As a result, it is challenging to understand how an AI model 

behaves using solely linear methods. 

 

3.2 Using Significant Input Time-Steps and Variables, Prediction 

  The RNN model was retrained based on the relevance score result to determine 

whether the major time-steps and variables discovered by the TensorFlow play a significant 

role in the RNN model. Based on the time-steps and variables that accounted for 80% of the 

overall relevance score, the important time-steps and variables with high relevance scores 

have been chosen. We put the model to the test by using different cutoffs (85% and 90%) 

and found no discernible changes in the results. The time-steps T6 for the Day+1 forecast 

(white bar in Fig. 5) and T8 for the Day+2 forecast are those where the accumulated ratio 

from the goal prediction time is closest to 80%. (black bar in Fig. 5). Fig. 5 shows the 

cumulative ratio of each variable's relevance score magnitude to the sum from the first rank 

variable. Fig. 5 shows the cumulative ratio of each variable's relevance score magnitude to 

the sum from the first rank variable. Similar to this, the accumulated ratio rises quickly close 

to the first rank variable then gradually as the rank rises. For the Day+1 forecast (white bars 

in Fig. 5) and the Day+2 forecast (black bars in Fig. 5), the variable rank where the 

accumulated ratio from the first rank is closest to 80% is 13 and 15, respectively (black bars 

in Fig. 5). The time-steps from the T6 (T9) to the goal prediction time and the variables above 

the 13th (15th) rank, respectively, were chosen as the key input timesteps and variables for 

the Day+1 (Day+2) forecast. 

  Table 3 compares the Day+1 and Day+2 forecasting abilities of the CMAQ, original 

RNN, and retrained RNN models for the winters of 2015–2021. The major input time-steps 

and variables were used to retrain the RNN model, which was given the names RNN T and 

RNN V, respectively. The retrained RNN models decrease MAE by 6.9 g/m3 and 7.1 g/m3 

and MBE by 8.9 g/m3 in both cases when compared to CMAQ, respectively. The retrained 

RNN models outperform the CMAQ forecasts in terms of accuracy and FAR by 18.4%, 

19.3%, and 18.9%, respectively. Since the CMAQ projections overestimate the concentration 

of PM2.5, they produce larger POD than RNN models. As a result, compared to the CMAQ 

model, the retrained RNN models' prediction abilities are considerably closer to those of the 

original RNN model. Furthermore, compared to the original model's POD (75.0%), the 

retrained RNN models' PODs are 4.1% and 3.8% higher. This finding emphasizes the value 

of the TensorFlow approach in comprehending the RNN model by confirming that the major 

input time-steps and variables proposed by the TensorFlow method play a significant 

influence in forecasting PM2.5. 
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4. Conclusion 

  Using the TensorFlow approach, a representative XAI technique where relevance 

scores are delivered to each neuron of all layers in the RNN by backpropagation beginning 

at the output layer, this study seeks to understand the decision-making process of an RNN 

model for PM2.5 prediction in the Tangerang metropolitan area of Indonesia. To determine 

the contribution of the input layer to the prediction, the relevance scores for the input time-

steps and variables were examined. According to the time-step analysis, the input variables 

from the numerical models (CMAQ and WRF) are crucial for forecasting PM2.5 

concentrations. For the Day+1 and Day+2 forecasts, in particular, input time-steps from the 

target prediction time to T6 and T8 account for over 80% of the overall relevance score. The 

study of each input variable reveals that, for the Day+1 and Day+2 forecasts, respectively, 

the top-13 and top-15 relevance score factors accounted for over 80% of the total score. The 

PM2.5 and PM10 simulated by the CMAQ and the observed PM2.5 made the biggest 

contributions to the RNN model's prediction among the air quality variables. The cosine 

similarity of the 850 hPa temperature and 500 hPa geopotential height, as well as the local 

relative humidity, 850 hPa temperature, and 700 hPa geopotential, were the meteorological 

variables with the highest relevance scores. By retraining the RNN model with the key input 

time-steps and variables that make up 80% of the total score, the TensorFlow results were 

validated. It is confirmed that the input time-steps and variables chosen by the TensorFlow 

approach considerably contribute to the prediction when the prediction accuracy of the 

retrained RNN models does not significantly differ from that of the original model. 

  The RNN model's prediction error may be studied using the TensorFlow approach. 

For instance, by concentrating on the significant time-steps and variables with high relevance 

scores obtained by the TensorFlow approach, the sources of mistakes can be successfully 

analyzed. Additionally, it is confirmed that the numerical models' input data play a key role in 

determining how well the RNN model predicts (Figs. 4 and 5). Generally speaking, as the 

prediction lead time is extended, the numerical model's predictive ability declines; this is also 

shown in the forecasts produced by the RNN model. As a result, the numerical model needs 

to be enhanced for the AI model's greater prediction abilities. 

  In contrast to the linear connections between the input variables and PM2.5, the 

relevance scores of the input variables are distributed unevenly in the RNN model. This 

suggests that AI models may use a decision-making process that is challenging to explain 

using our current understanding or simple linear ideas. A deeper knowledge of the 

mechanisms linked to PM2.5 concentration, which continue to be a key issue for this field of 

research, will be needed in order to comprehend the drivers for decision-making in AI 

models. 
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